分类: 程序员

通过WPeMatico自动添加.

  • 我做系统架构的一些原则

    我做系统架构的一些原则

    工作 20 多年了,这 20 来年看到了很多公司系统架构,也看到了很多问题,在跟这些公司进行交流和讨论的时候,包括进行实施和方案比较的时候,都有很多各种方案的比较和妥协,因为相关的经历越来越多,所以,逐渐形成了自己的逻辑和方法论。今天,想写下这篇文章,把我的这些个人的经验和想法总结下来,希望能够让更多的人可以参考和借鉴,并能够做出更好的架构来。另外,我的这些思维方式和原则都针对于现有市面上众多不合理的架构和方案,所以,也算是一种“纠正”……(注意,这篇文章所说的这些架构上的原则,一般适用于相对比较复杂的业务,如果只是一些简单和访问量不大的应用,那么你可能会得出相反的结论)

    原则一:关注于真正的收益而不是技术本身

    对于软件架构来说,我觉得第一重要的是架构的收益,如果不说收益,只是为了技术而技术,而没有任何意义。对于技术收益来说,我觉得下面这几个收益是非常重要的:

    • 是否可以降低技术门槛加快整个团队的开发流程。能够加快整个团队的工程流程,快速发布,是软件工程一直在解决的问题,所以,系统架构需要能够进行并行开发,并行上线和并行运维,而不会让某个团队成为瓶颈点。(注:就算拖累团队的原因是组织构架,也不妨碍我们做出并行的系统架构设计)
    • 是否可以让整个系统可以运行的更稳定。要让整个系统可以运行的更为的稳定,提升整个系统的 SLA,就需要对有计划和无计划的停机做相应的解决方案(参看《关于高可用的架构》)
    • 是否可以通过简化和自动化降低成本。最高优化的成本是人力成本,人的成本除了慢和贵,还有经常不断的 human error。如果不能降低人力成本,反而需要更多的人,那么这个架构设计一定是失败的。除此之外,是时间成本,资金成本。

    如果一个系统架构不能在上面三个事上起到作用,那就没有意义了。

    原则二:以应用服务和 API 为视角,而不是以资源和技术为视角

    国内很多公司都会有很多分工,基本上都会分成运维和开发,运维又会分成基础运维和应用运维,开发则会分成基础核心开发和业务开发。不同的分工会导致完全不同的视角和出发点。比如,基础运维和开发的同学更多的只是关注资源的利用率和性能,而应用运维和业务开发则更多关注的是应用和服务上的东西。这两者本来相关无事,但是因为分布式架构的演进,导致有一些系统已经说不清楚是基础层的还是应用层的了,比如像服务治理上的东西,里面即有底层基础技术,也需要业务的同学来配合,包括 k8s 也样,里面即有底层的如网络这样的技术,也有需要业务配合的 readniess和 liveness 这样的健康检查,以及业务应用需要 configMap 等等 ……

    这些东西都让我感觉到所谓 DevOps,其实就是因为很多技术和组件已经分不清是 Dev 还是 Ops 的了,所以,需要合并 Dev和 Ops。而且,整个组织和架构的优化,已经不能通过调优单一分工或是单一组件能够有很大提升的了。其需要有一种自顶向下的,整体规划,统一设计的方式,才能做到整体的提升(可以试想一下城市交通的优化,当城市规模到一定程度的时候,整体的性能你是无法通过优化几条路或是几条街区来完成的,你需要对整个城市做整体的功能体的规划才可能达到整体效率的提升)。而为了做到整体的提升,需要所有的人都要有一个统一的视角和目标,这几年来,我觉得这个目标就是——要站在服务和 对外API的视角来看问题,而不是技术和底层的角度。

    原则三:选择最主流和成熟的技术

    技术选型是一件很重要的事,技术一旦选错,那会导致整个架构需要做调整,而对架构的调整重来都不是一件简单的事,我在过去几年内,当系统越来越复杂的时候,用户把他们的  PHP,Python, .NET,或 Node.js 的架构完全都迁移到 Java + Go 的架构上来的案例不断的发生。这个过程还是非常痛苦的,但是你没有办法,当你的系统越来越复杂,越来越大时,你就再也不能在一些玩具技术上玩了,你需要的更为工业化的技术。

    • 尽可能的使用更为成熟更为工业化的技术栈,而不是自己熟悉的技术栈。 所谓工业化的技术栈,你可以看看大多数公司使用的技术栈,比如:互联网,金融,电信……等等 ,大公司会有更多的技术投入,也需要更大规模的生产,所以,他们使用的技术通常来说都是比较工业化的。在技术选型上,千万不要被——“你看某个视频公司也在用这个技术”,或是一些在论坛上看到的一些程序员吐槽技术的观点(没有任何的数据,只有自己的喜好)来决定自己的技术,还是看看主流大多数公司实际在用的技术栈,会更靠谱一些。
    • 选择全球流行的技术,而不是中国流行的技术。技术这个东西一定是一个全球化的东西,不是一个局域化的事。所以,一定要选国际化的会更好。另外,千万不要被某些公司的“特别案例”骗过去了,那怕这个案例很性感,关键还是要看解决问题的思路和采用的技术是否具有普世性。只有普世性的技术有更强的生命力。
    • 尽可能的使用红利大的主流技术,而不要自己发明轮子,更不要魔改。我见过好些个公司魔改开源软件,比如有个公司同魔改mesos,最后改着改着发现自己发明另一个 kubernetes。我还见过很多公司或技术团队喜欢自己发明自己的专用轮子,最后都会被主流开源软件所取代。完全没有必要。不重新发明轮子,不魔改,不是因为自己技术不能,而是因为,这个世界早已不是自己干所有事的年代了,这个时代是要想尽方法跟整个产业,整个技术社区融合和合作,这样才会有最大的收益。那些试图因为某个特例需要自成一套的玩法,短期没问题,但长期来说,我都不看好。
    • 绝大多数情况下,如无非常特殊要求,选 Java基本是不会错的。一方面,这是因为 Java 的业务开发的生产力是非常好的,而且有 Spring 框架保障,代码很难写烂,另外,Java 的社区太成熟了,你需要的各种架构和技术都可以很容易获得,技术红利实在是太大。这种运行在JVM上的语言有太多太多的好处了。在 Java 的技术栈上,你的架构风险和架构的成本(无论是人力成本,时间成本和资金成本)从长期来说都是最优的

    在我见过的公司中,好些公司的架构都被技术负责人个人的喜好、擅长和个人经验给绑架了,完全不是从一个客观的角度来进行技术选型。其实,从 0 到 1 的阶段,你用什么样的技术都行,如果你做一个简单的应用,没有事务处理没有复杂的交易流程,比如一些论坛、社交之类的应用,你用任何语言都行。但是如果有一天你的系统变复杂了,需要处理交易了,量也上来了,从 1 到 10,甚至从 10 到 100,你的开发团队也变大了,需要构建的系统越来越大,你可能会发现你只有一个选择,就是 Java。想想京东从.NET 到 Java,淘宝从 PHP 到 Java……

    注,一些有主观喜好的人一定会对我上述对 Java 的描述感到不适,我还用一些证据说明一下——全中国所有的电商平台,几百家银行,三大电信运营商,所有的保险公司,劵商的系统,医院里的系统,电子政府系统,等等,基本都是用 Java 开发的,包括 AWS 的主流语言也是 Java,阿里云一开始用 C++/Python 写控制系统,后面也开始用 Java ……你可能会说 B站是用 go语言,但是你可能不知道 B 站的电商和大数据是用 Java……懂着数据分析的同学,建议上各大招聘网站上搜一下 Java 的职位数量,你就知道某个技术是否主流和热门……

    原则四:完备性会比性能更重要

    我发现好些公司的架构师做架构的时候,首要考虑的是架构的性能是否能够撑得住多大多大的流量,而不是考虑系统的完备性和扩展性。所以,我已经多次见过这样的案例了,一开始直接使用 MongoDB 这样的非关系型数据库,或是把数据直接放在 Redis 里,而直接放弃关系型数据库的数据完备性的模型,而在后来需要在数据上进行关系查询的时候,发现 NoSQL 的数据库在 Join 上都表现的太差,然后就开始各种飞线,为了不做 Join 就开始冗余数据,然而自己又维护不好冗余数据后带来的数据一致性的问题,导致数据上的各种错乱丢失。

    所以,我给如下的一些如下的架构原则:

    • 使用最科学严谨的技术模型为主,并以不严谨的模型作为补充。对于上面那个案例来说,就是——永远使用完备支持 ACID 的关系型数据库,然后用 NoSQL 作补充,而不是完全放弃关系型数据库。这里的原则就是所谓的“先紧后松”,一开始紧了,你可以慢慢松,但是开始松了,以后你想紧再也紧不过来了。
    • 性能上的东西,总是有很多解的。我这么多年的经历告诉我,性能上的事,总是有解的,手段也是最多的,这个比起架构的完备性和扩展性来说真的不必太过担心。

    为了追求所谓的性能,把整个系统的完备性丢失掉,相当地得不偿失。

    原则五:制定并遵循服从标准、规范和最佳实践

    这个原则是非常重要的,因为只有服从了标准,你的架构才能够有更好的扩展性。比如:我经常性的见到很多公司的系统既没有服从业界标准,也没有形成自己公司的标准,感觉就像一群乌合之众一样。最典型的例子就是 HTTP 调用的状态返回码。业内给你的标准是 200表示成功,3xx 跳转,4xx 表示调用端出错,5xx 表示服务端出错,我实在是不明白为什么无论成功和失败大家都喜欢返回 200,然后在 body 里指出是否error(前两年我在微信公众号里看到一个有一定名气的互联网老兵推荐使用无论正确还是出错都返回 200 的做法,我在后台再三确认后,我发现这样的架构师真是害人不浅)。这样做最大的问题是——监控系统将在一种低效的状态下工作。监控系统需要把所有的网络请求包打开后才知道是否是错误,而且完全不知道是调用端出错还是服务端出错,于是一些像重试或熔断这样的控制系统完全不知道怎么搞(如果是 4xx错,那么重试或熔断是没有意义的,只有 5xx 才有意义)。有时候,我会有种越活越退步的感觉,错误码设计这种最基本最基础的东西为什么会没有?并且一个公司会任由着大家乱来?这些基础技能怎么就这样丢掉了?

    还有,我还见过一些公司,他们整个组织没有一个统一的用户 ID 的设计,各个系统之间同步用户的数据是通过用户的身份证 ID,是的,就是现实世界的身份证 ID,包括在网关上设置的用户白名单居然也是用身份证 ID。我对这个公司的内的用户隐私管理有很大的担忧。一个企业,一个组织,如果没有标准和规范,也就会有抽象,这一定是要出各种乱子的。

    下面,我罗列一些你需要注意的标准和规范(包括但不限于):

    • 服务间调用的协议标准和规范。这其中包括 Restful API路径, HTTP 方法、状态码、标准头、自定义头等,返回数据 JSon Scheme……等。
    • 一些命名的标准和规范。这其中包括如:用户 ID,服务名、标签名、状态名、错误码、消息、数据库……等等
    • 日志和监控的规范。这其中包括:日志格式,监控数据,采样要求,报警……等等
    • 配置上的规范。这其中包括:操作系统配置、中间件配置,软件包……等等
    • 中间件使用的规范。数据库,缓存、消息队列……等等
    • 软件和开发库版本统一。整个组织架构内,软件或开发库的版本最好每年都升一次级,然后在各团队内统一。

    这里重要说一下两个事:

    • Restful API 的规范。我觉得是非常重要的,这里给两个我觉得写得最好的参考:PaypalMicrosoft 。Restful API 有一个标准和规范最大的好处就是监视可以很容易地做各种统计分析,控制系统可以很容易的做流量编排和调度。
    • 另一个是服务调用链追踪。对于服务调用链追踪来说,基本上都是参考于 Google Dapper 这篇论文,目前有很多的实现,最严格的实现是 Zipkin,这也是 Spring Cloud Sleuth 的底层实现。Zipkin 贴近 Google Dapper 论文的好处在于——无状态,快速地把 Span 发出来,不消耗服务应用侧的内存和 CPU。这意味着,监控系统宁可自己死了也不能干扰实际应用。
    • 软件升级。我发现很多公司包括 BAT,他们完全没有软件升级的活动,全靠开发人员自发。然而,这种成体系的活动,是永远不可能靠大众的自发形成的。一个公司至少一年要有一次软件版本升级的review,然后形成软件版本的统一和一致,这样会极太简化系统架构的复杂度。

    原则六:重视架构扩展性和可运维性

    在我见过很多架构里,技术人员只考虑当下,但从来不考虑系统的未来扩展性和可运维性。所谓的管生不管养。如果你生下来的孩子胳膊少腿,严重畸形,那么未来是很难玩的。因为架构和软件不是写好就完的,是需要不断修改不断维护的,80%的软件成本都是在维护上。所以,如何让你的架构有更好的扩展性,可以更容易地运维,这个是比较重要的。所谓的扩展性,意味着,我可以很容易地加更多的功能,或是加入更多的系统,而所谓可运维,就是说我可以对线上的系统做任意的变更。扩展性要求的是有标准规范且不耦合的业务架构,可运维性要求的则是可控的能力,也就是一组各式各样的控制系统。

    • 通过服务编排架构来降低服务间的耦合。比如:通过一个业务流程的专用服务,或是像 Workflow,Event Driven Architecture , Broker,Gateway,Service Discovery 等这类的的中间件来降低服务间的依赖关系。
    • 通过服务发现或服务网关来降低服务依赖所带来的运维复杂度。服务发现可以很好的降低相关依赖服务的运维复杂度,让你可以很轻松的上线或下线服务,或是进行服务伸缩。
    • 一定要使用各种软件设计的原则。比如:像SOLID这样的原则(参看《一些软件设计的原则》),IoC/DIP,SOA 或 Spring Cloud 等 架构的最佳实践(参看《SteveY对Amazon和Google平台的吐槽》中的 Service Interface 的那几条军规),分布式系统架构的相关实践(参看:《分布式系统的事务处理》,或微软件的 《Cloud Design Patterns》)……等等

    原则七:对控制逻辑进行全面收口

    所有的程序都会有两种逻辑,一种是业务逻辑,一种是控制逻辑,业务逻辑就是完成业务的逻辑,控制逻辑是辅助,比如你用多线程,还是用分布式,是用数据库还是用文件,如何配置、部署,运维、监控,事务控制,服务发现,弹性伸缩,灰度发布,高并发,等等,等等 ……这些都是控制逻辑,跟业务逻辑没有一毛钱关系。控制逻辑的技术深度会通常会比业务逻辑要深一些,门槛也会要高一些,所以,最好要专业的程序员来负责控制逻辑的开发,统一规划统一管理,进行收口。这其中包括:

    • 流量收口。包括南北向和东西向的流量的调度,主要通过流量网关,开发框架 SDK或 Service Mesh 这样的技术。
    • 服务治理收口。包括:服务发现、健康检查,配置管理、事务、事件、重试、熔断、限流……主要通过开发框架 SDK – 如:Spring Cloud,或服务网格Service Mesh等技术。
    • 监控数据收口。包括:日志、指标、调用链……主要通过一些标准主流的探针,再加上后台的数据清洗和数据存储来完成,最好是使用无侵入式的技术。监控的数据必须统一在一个地方进行关联,这样才会产生信息。
    • 资源调度有应用部署的收口。包括:计算、网络和存储的收口,主要是通过容器化的方案,如k8s来完成。
    • 中间件的收口。包括:数据库,消息,缓存,服务发现,网关……等等。这类的收口方式一般要在企业内部统一建立一个共享的云化的中间件资源池。

    对此,这里的原则是:

    • 你要选择容易进行业务逻辑和控制逻辑分离的技术。这里,Java 的 JVM+字节码注入+AOP 式的Spring 开发框架,会带给你太多的优势。
    • 你要选择可以享受“前人种树,后人乘凉”的有技术红利的技术。如:有庞大社区而且相互兼容的技术,如:Java, Docker,  Ansible,HTTP,Telegraf/Collectd……
    • 中间件你要使用可以 支持HA集群和多租户的技术。这里基本上所有的主流中间件都会支持 HA 集群方式的。

    原则八:不要迁就老旧系统的技术债务

    我发现很多公司都很非常大的技术债务,这些债务具体表现如下:

    • 使用老旧的技术。比如,使用HTTP1.0, Java 1.6,Websphere,ESB,基于 socket的通讯协议,过时的模型……等等
    • 不合理的设计。比如,在 gateway 中写大量的业务逻辑,单体架构,数据和业务逻辑深度耦合,错误的系统架构(把缓存当数据库,用消息队列同步数据)……等等
    •  缺少配套设施。比如,没有自动化测试,没有好的软件文档,没有质量好的代码,没有标准和规范……等等

    来找我寻求技术帮助的人都有各种各样的问题。我都会对他们苦口婆心地说同样的一句话——“如果你是来找我 case-by-case 解决问题,我兴趣不大,因为,你们千万不要寄希望能够很简单的把一辆夏利车改成一辆法拉利跑车,或是把一栋地基没打好的歪楼搞正。以前欠下的技术债,都得要还,没打好的地基要重新打,没建配套设施都要建。这些基础设施如果不按照正确科学的方式建立的话,你是不可能有一个好的的系统,我也没办法帮你 case-by-case 的解决问题……”,一开始,他们都会对我说,没问题,我们就是要还债,但是,最后发现要还的债真多,有点承受不了,就开始现原形了。

    他们开始为自己的“欠的技术债”找各种合理化的理由——给你解释各种各样的历史原因和不得以而为之的理由。谈着谈着,让我有一种感觉——他们希望得到一种什么都不改什么都不付出的方式就可以进步的心态,他们宁可让新的技术 low 下来迁就于这些技术债,把新的技术滥用地乱七八糟的。有一个公司,他们的系统架构和技术选型基本都搞错了,使用错误的模型构建系统,导致整个系统的性能非常之差,也才几千万条数据,但他们想的不是还债,不是把地基和配套设施建好,而且要把楼修的更高,上更多的系统——他们觉得现有的系统挺好,性能问题的原因是他们没一个大数据平台,所以要建大数据平台……

    我见过很多很多公司,包括大如 BAT 这样的公司,都会在原来的技术债上进行更多的建设,然后,技术债越来越大,利息越来越大,最终成为一个高利贷,再也还不了(我在《开发团队的效率》一文中讲过一个 WatchDog 的架构模式,一个系统烂了,不是去改这个系统,而是在旁边建一个系统来看着它,我很难理解为什么会有这样的逻辑,也许是为了要解决更多的就业……)

    这里有几个原则和方法我是非常坚持的,分享给大家:

    • 与其花大力气迁就技术债务,不如直接还技术债。是所谓的长痛不如短痛。
    • 建设没有技术债的“新城区”,并通过“防腐层 ”的架构模型,不要让技术债侵入“新城区”

    原则九:不要依赖自己的经验,要依赖于数据和学习

    有好些人来找我跟我说他们的技术问题,然后希望我能够给他们一个答案。我说,我需要了解一下你现有系统的情况,也就是需要先做个诊断,我只有得到这些数据后,我才可能明白真正的原因是什么 ,我才可能给你做出一个比较好的技术方案。我个人觉得这是一种对对方负责的方法,因为技术手段太多了,所有的技术手段都有适应的场景,并且有各种 trade-off,所以,只有调研完后才能做出决定。这跟医生看病是一样的,确诊病因不能靠经验,还是要靠诊断数据。在科学面前,所有的经验都是靠不住的……

    另外,如果有一天你在做技术决定的时候,开始凭自己以往的经验,那么你就已经不可能再成长了。人都是不可能通过不断重复过去而进步的,人的进步从来都是通过学习自己不知道的东西。所以,千万不要依赖于自己的经验做决定。做任何决定之前,最好花上一点时间,上网查一下相关的资料,技术博客,文章,论文等 ,同时,也看看各个公司,或是各个开源软件他们是怎么做的?然后,比较多种方案的 Pros/Cons,最终形成自己的决定,这样,才可能做出一个更好的决定。

    原则十:千万要小心 X – Y 问题,要追问原始需求

    对于 X-Y 问题,也就是说,用户为了解决 X问题,他觉得用 Y 可以解,于是问我 Y 怎么搞,结果搞到最后,发现原来要解决的 X 问题,这个时候最好的解决方案不是 Y,而是 Z。 这种 X-Y 问题真是相当之多,见的太多太多了。所以,每次用户来找我的时候,我都要不断地追问什么是 X 问题。

    比如,好些用户都会来问我他们要一个大数据流式处理,结果追问具体要解决什么样的问题时,才发现他们的问题是因为服务中有大量的状态,需要把相同用户的数据请求放在同一个服务上处理,而且设计上导致一个慢函数拖慢整个应用服务。最终就是做一下性能调优就好了,根本没有必要上什么大数据的流式处理。

    我很喜欢追问为什么 ,这种追问,会让客户也跟着来一起重新思考。比如,有个客户来找我评估的一个技术架构的决定,从理论上来说,好像这个架构在用户的这个场景下非常不错。但是,这个场景和这个架构是我职业生涯从来没有见过的。于是,我开始追问这个为什么会是这么一个场景?当我追问的时候,我发现用户都感到这个场景的各种不合理。最后引起了大家非常深刻的研讨,最终用户把那个场景修正后,而架构就突然就变成了一个常见且成熟的的模型……

    原则十一:激进胜于保守,创新与实用并不冲突

    我对技术的态度是比较激进的,但是,所谓的激进并不是瞎搞,也不是见新技术就上,而是积极拥抱会改变未来的新技术,如:Docker/Go,我就非常快地跟进,但是像区块链或是 Rust 这样的,我就不是很积极。因为,其并没有命中我认为的技术趋势的几个特征(参看《Go,Docker 和新技术 》)。当然,我也不是不喜欢的就不学了,我对区块链和 Rust 我一样学习,我也知道这些技术的优势,但我不会大规模使用它们。另外,我也尊重保守的决定,这里面没有对和错。但是,我个人觉得对技术激进的态度比起保守来说有太多的好处了。一方面来说,对于用户来说,很大程度上来说,新技术通常都表面有很好的竞争力,而且我见太多这样成功的公司都在积极拥抱新的技术的,而保守的通常来说都越来越不好。

    有一些人会跟我说,我们是实用主义,我们不需要创新,能解决当下的问题就好,所以,我们不需要新技术,现有的技术用好就行了。这类的公司,他们的技术设计第一天就在负债,虽然可以解决当下问题,但是马上就会出现新的问题,然后他们会疲于解决各种问题。最后呢,最后还是会走到新的技术上。

    这里的逻辑很简单 —— 进步永远来自于探索,探索是要付出代价的,但是收益更大。对我而言,不敢冒险才是最大的冒险,不敢犯错才是最大的错误,害怕失去会让你失去的更多……

    (全文完)

    (转载本站文章请注明作者和出处 酷 壳 – CoolShell ,请勿用于任何商业用途)

    The post 我做系统架构的一些原则 first appeared on 酷 壳 – CoolShell.

  • 如何做一个有质量的技术分享

    分享信息并不难,大多数人都能做到,就算是不善言谈性格内向的技术人员,通过博客或社交媒体,或是不正式的交流,他们都能或多或少的做到。但是如果你想要做一个有质量有高度的分享,这个就难了,所谓的有质量和有高度,我心里面的定义有两点:1)分享内容的保鲜期是很长的,2)会被大范围的传递。我们团队内每周都在做技术分享,虽然分享的主题都很有价值,但是分享的质量参差不齐,所以,想写下这篇文章 。供大家参考。

    首先,我们先扪心自问一下,我们自己觉得读到的好的技术文章是什么?我不知道大家的是什么,我个人认为的好的文章是下面这样的:

    • 把复杂的问题讲解的很简单也很清楚。比如我高中时期读到这本1978年出版的《从一到无穷大》,用各种简单通俗通懂的话把各种复杂的科学知识讲的清清楚楚。还有看过的几本很好的书,有一本是《Windows程序设计》,从一个hello world的程序开始一步一步教你Windows下的原生态编程。
    • 有各种各样的推导和方案的比较,让你知其然知其所以然。有了不同方案的比较,才可能让人有全面的认识。这个方面的经典作著是《Effective C++》。
    • 原理、为什么、思路、方法论会让人一通百通。这里面最经典的恐怕就是《十万个为什么》了,在计算机方面也有几本经典书,有《Unix编程艺术》、《设计模式》、《深入理解计算机系统》等书,以及《The C10K Problem》等很多技术论文。

    其实,从教科书,到专业书,再到论文,都有上面这些不错的特质。

    所以,如果你想做一个好的技术分享的话,下面是我总结出来的方法,供你参考。

    • 先描述好一个问题。这样能够听众带入进来,如果这个问题是他们感同身受的,那是最好了。千万不要一上来就说What,或是直接冲进答案里。这样的分享是在灌输和填鸭。把Why说清楚。没有Why,直接谈What的技术分享,通常来说价值不大。
    • How比What重要。在讲How的时候,也就是如何解这个问题。
      • 先要把问题模型说清楚,有了问题模型这个框框后,方案才有意义。
      • 然后要有不同技术的比较。有了比较后,听众才会更相信你。
      • 直接上What的技术细节,其实没有太大意义。
    • 一定要有Best Practice或方法论总结,否则上不了档次的。也就是分享中大家可以得到的重要收获。

    说明了这个模型就是:问题 –> 方案 –> 总结。这其中是有一定的心理学模型的,具体表现如下:

    • 用问题来吸引受众,带着受众来一起思考
    • 用问题模型来框住受众的思考范围,让受众聚焦
    • 给出几种不同的解决方案,比较他们的优缺点,让受众有一种解决问题的参与感。
    • 最后,给出最佳实践,方法论或套路,因为有了前三步的铺垫,受众欣然接受。
    • 整个过程会让受众有强烈的成长感和收获感。

    这里有几个示例,也是我在我司 MegaEase 内部的技术分享,供你参考(我个人的YouTube频道

    技术分享:Prometheus是怎么存储数据的(Youtube)

    技术分享:Distributed Lock Manager(Youtube)

    下面是我写在我们公司内的Knowledge Sharing中的Best Practice,供参考

    Sharing Guideline

    Please follow the following sharing protocols

    Understand Sharing

    • Sharing is the hard way to learn knowledge. The presenter gains the biggest advantages. not audience. 分享是学习知识的最难的方式。分享者获得的好处最最多的,而不是观众。
    • Sharing can open the knowledge door for the audience, but you have to walk to knowledge by yourself. 分享可以为听众打开知识的大门,但你能不能获得知识还要靠你自己。

    Best Practices

    To perform a great sharing, please follow the below practices.

    • Do not share a big topic, a small topic is better. A big topic could make the audience lose focus. Remember, Less is More!
    • Sharing time less than 60 mins is the best.
    • English language for slides is preferred.
    • While prepare the sharing contents, it’s better to discuss with the senior people to help you to see the whole picture, understand the good side and bad side, know what you don’t know … etc.
    • Strong Recommend Materials Outlines
      • What’s the Problem?
      • How to Solve the Problem?
      • The Best Solution or Practice.
      • The Mechanism, Key Techniques, and Source Code
      • Pros/Cons
      • References (Further reading)

    For example, if you want to sharing a topic about Docker. the following outlines would be good one:

    • What’s the major problems need to solve. (Provision, Environment, Isolation etc.)
    • The Alternative solutions. (Puppet/Chef/Ansible, VM, LXC etc.)
    • The Best Solution – Docker. Why?
    • Docker’s key techniques – image, cgroup, union fs, namespace…
    • Docker’s Pros/Cons
    • Further reading list.

    (全文完)

    (转载本站文章请注明作者和出处 酷 壳 – CoolShell ,请勿用于任何商业用途)

    The post 如何做一个有质量的技术分享 first appeared on 酷 壳 – CoolShell.

  • 谈谈公司对员工的监控

    谈谈公司对员工的监控

    今天看到微博上有一个热点事件, 是一个关于某公司做的一个监控员工离职倾向的软件,从截图中可以看到员工访问招聘网站的次数,还有投递的简历以及搜索的关建词等等信息,通过这些信息分析员工的离职倾向。然后我发一个微博,说了一下,我以前工作过的公司无论外国公司还是中国公司都有这样的情况,收到一些人来问我相关的情况,所以,我想还是写篇文章详细地说一下,我对这种事情的看法。

    本文分成下面个部分:

    • 公司监控员工的技术手段有哪些?
    • 为什么要监控员工?
    • 外企和国企有什么不一样?
    • 我对此事的看法

    技术手段

    下面是我经历过的几个手段:

    1)通过网络嗅探的方式。也就是说,你只要上了公司的网络,你个人设备上的通讯信息就可以被人以网络抓包+分析的方式进行分析。当然,这样的手段已经不怎么好用了,因为现在的网络基本上都是HTTPS加密的,网络嗅探的方式只能知道你访问了什么IP,对于其中的数据是没有办法知道的。

    2)通过使用公司提供的软硬件工具。你使用公司的电子邮箱,浏览器(或是公司的代理服务器),通讯工具(包括语音电话),手机办公应用……等来处理你的个人事宜的时候,必然会被监控。这样,你只需要不要使用公司的软件来处理自己的私事就好了。

    3)通过安装一个监控程序。这个是最可怕的了,因为无论你加不加密都没用了。一般来说,你不安装这个程序,你就没有办法连上网络,包括公司内网和外网。这个监控程序,会收集你电脑或手机上能够收集的到的所有的信息,比如,你的网络信息,按键操作,录屏,软件数据……等等。

    4)办公区监控。我见过的还有使用摄像头,在会议室中安装声音和视频监控设备,对整个办公区内发生所有的事情进行监控。

    5)通过爬虫。通过爬虫分析员工的社交平台上的各种言论,包括招聘网站。除了公司需要分布和自己相关的舆情,同样也开始监控员工的行为和价值观等。这已经不是监控隐私信息了……

    公司监控的目的

    公司监控的目的最早就是为了防止自己公司内的数据和信息外泄,所以,他们害怕自己的员工访问了什么不合适的网站,或是下载了什么有恶意的软件,或是不小心发错了邮件。另外一些公司也会使用外包人员,所以,对于外部编制的人员更需要有信息泄漏防范的安全需求。当然,也害怕有一些商业间谍或是自己的员工被收买了窃取公司内部的敏感信息。尤其是对于一些本身就是做数据的公司,如我以前呆过的Thomson Reuters,这家公司主要是卖金融数据的,所以,对信息泄漏是非常注重的,其就是需要在员工的电脑上安装监控软件。

    还有一些劳动密集型的工作,比如在Amazon里的仓库里工作的人,公司会监控员工的工作量,以此来评估员工的工作绩效。对于用监控软件来评估程序员的工作量,我到今天仅见过监控外包人员的,在中国,外包人员需要使用甲方的电脑进行签到和签退,以及相关的工作。除了上述的信息安全目前,还能够看到员工的工作时长的情况。

    所以,一般来说,公司监控的目的主要是为了自己的信息安全,还有员工的工作量评估,一般来说,不会涉及员工的隐私

    但是,随着收集的数据越来越多,有些公司发现还可以做更多的事,比如,上述的员工离职倾向的分析。还有一些公司还会收集员工在外网的数据,比如你在社交平台上的各种言论,来分析你对公司的忠诚度和你的价值观取向……我个人觉得这些已经令人不耻了。

    外企与国企不同之处

    我经历过的公司中,外国公司和中国公司都有监控的经历,这里说一下他们的不一样之处。最大的不一样的地方是,外国公司会让你有知情权,而中国公司则完全没有

    我记得我进入Thomson Reuters 公司的时候,公司要求签署一份监控的知情的同意书,其中用中英文写的,就是说,你授权公司监控你的如下这些信息:1)上网记录,2)下载的软件,3)工作电脑,4)公司的座机电话,5)会议室和办公区的语音和视频监控……大概有两页A4纸,然后也说明了这些数据公司仅用于信息安全的风控,不用于个人隐私分析等等……并且会符合法律要求保护员工的这些数据不外泄……这些条款都经得起法律的推敲。这样的协议是需要员工签字的,并且对双方都有法律约束的。

    中国的公司则不会告诉你他们会监控你哪些数据,而这些数据拿来做什么。 我记得我在某公司工作的时候,就有员工发现自己访问自己的gmail的录屏被公司收集后的愤怒……

    我对此事的看法

    一方面,我对于公司通过使用监控软件监控员工的行为我是能够理解的,但是,应该让员工有知情权,并和员工明确一个监控的信息和范围,包括收集的数据的用途和安全措施,以及数据多长时间销毁的协议。如果没有这个协议的话,我觉得本质上就是一种流氓行为。

    另一方面,针对监控员离职的倾向来说,我实在不知道有什么意义?公司你知道了又能如何呢?你是要找员工作思想工作,还是要给员工更好的待遇,还是直接开掉?如果你对自己的企业有信心,你就不必担心员工会离开,如果你的企业有问题,你为什么不把心思花在建设自己的企业上来呢?安装这样的监控软件对于企业没有什么帮助,反而只会让你的企业的形象更low……

    再仔细想想,员工有一万种方法泄漏你公司的信息,无论你怎么监控,只要他想,他总是能够找到方法的,不是么?如何让找到或是培养有职业操守的员工,如何管理自己企业的商业信息,如何建立一个更好的企业文化让员工更有归属感,成为企业的共同体,一同维护共同利益,为企业着想,这不才是公司真正应该干的事吗?!监控员工充分暴露了这样的企业没有一个好的企业文化,不懂得高级的管理,所以,只能靠监控这样的手段来管理企业了……这样的企业不去也罢了。

    (全文完)

    (转载本站文章请注明作者和出处 酷 壳 – CoolShell ,请勿用于任何商业用途)

    The post 谈谈公司对员工的监控 first appeared on 酷 壳 – CoolShell.