标签: tech

  • Intent Prototyping: The Allure And Danger Of Pure Vibe Coding In Enterprise UX (Part 1)

    There is a spectrum of opinions on how dramatically all creative professions will be changed by the coming wave of agentic AI, from the very skeptical to the wildly optimistic and even apocalyptic. I think that even if you are on the “skeptical” end of the spectrum, it makes sense to explore ways this new technology can help with your everyday work. As for my everyday work, I’ve been doing UX and product design for about 25 years now, and I’m always keen to learn new tricks and share them with colleagues. Right now, I’m interested in AI-assisted prototyping, and I’m here to share my thoughts on how it can change the process of designing digital products.

    To set your expectations up front: this exploration focuses on a specific part of the product design lifecycle. Many people know about the Double Diamond framework, which shows the path from problem to solution. However, I think it’s the Triple Diamond model that makes an important point for our needs. It explicitly separates the solution space into two phases: Solution Discovery (ideating and validating the right concept) and Solution Delivery (engineering the validated concept into a final product). This article is focused squarely on that middle diamond: Solution Discovery.

    How AI can help with the preceding (Problem Discovery) and the following (Solution Delivery) stages is out of the scope of this article. Problem Discovery is less about prototyping and more about research, and while I believe AI can revolutionize the research process as well, I’ll leave that to people more knowledgeable in the field. As for Solution Delivery, it is more about engineering optimization. There’s no doubt that software engineering in the AI era is undergoing dramatic changes, but I’m not an engineer — I’m a designer, so let me focus on my “sweet spot”.

    And my “sweet spot” has a specific flavor: designing enterprise applications. In this world, the main challenge is taming complexity: dealing with complicated data models and guiding users through non-linear workflows. This background has had a big impact on my approach to design, putting a lot of emphasis on the underlying logic and structure. This article explores the potential of AI through this lens.

    I’ll start by outlining the typical artifacts designers create during Solution Discovery. Then, I’ll examine the problems with how this part of the process often plays out in practice. Finally, we’ll explore whether AI-powered prototyping can offer a better approach, and if so, whether it aligns with what people call “vibe coding,” or calls for a more deliberate and disciplined way of working.

    What We Create During Solution Discovery

    The Solution Discovery phase begins with the key output from the preceding research: a well-defined problem and a core hypothesis for a solution. This is our starting point. The artifacts we create from here are all aimed at turning that initial hypothesis into a tangible, testable concept.

    Traditionally, at this stage, designers can produce artifacts of different kinds, progressively increasing fidelity: from napkin sketches, boxes-and-arrows, and conceptual diagrams to hi-fi mockups, then to interactive prototypes, and in some cases even live prototypes. Artifacts of lower fidelity allow fast iteration and enable the exploration of many alternatives, while artifacts of higher fidelity help to understand, explain, and validate the concept in all its details.

    It’s important to think holistically, considering different aspects of the solution. I would highlight three dimensions:

    1. Conceptual model: Objects, relations, attributes, actions;
    2. Visualization: Screens, from rough sketches to hi-fi mockups;
    3. Flow: From the very high-level user journeys to more detailed ones.

    One can argue that those are layers rather than dimensions, and each of them builds on the previous ones (for example, according to Semantic IxD by Daniel Rosenberg), but I see them more as different facets of the same thing, so the design process through them is not necessarily linear: you may need to switch from one perspective to another many times.

    This is how different types of design artifacts map to these dimensions:

    As Solution Discovery progresses, designers move from the left part of this map to the right, from low-fidelity to high-fidelity, from ideating to validating, from diverging to converging.

    Note that at the beginning of the process, different dimensions are supported by artifacts of different types (boxes-and-arrows, sketches, class diagrams, etc.), and only closer to the end can you build a live prototype that encompasses all three dimensions: conceptual model, visualization, and flow.

    This progression shows a classic trade-off, like the difference between a pencil drawing and an oil painting. The drawing lets you explore ideas in the most flexible way, whereas the painting has a lot of detail and overall looks much more realistic, but is hard to adjust. Similarly, as we go towards artifacts that integrate all three dimensions at higher fidelity, our ability to iterate quickly and explore divergent ideas goes down. This inverse relationship has long been an accepted, almost unchallenged, limitation of the design process.

    The Problem With The Mockup-Centric Approach

    Faced with this difficult trade-off, often teams opt for the easiest way out. On the one hand, they need to show that they are making progress and create things that appear detailed. On the other hand, they rarely can afford to build interactive or live prototypes. This leads them to over-invest in one type of artifact that seems to offer the best of both worlds. As a result, the neatly organized “bento box” of design artifacts we saw previously gets shrunk down to just one compartment: creating static high-fidelity mockups.

    This choice is understandable, as several forces push designers in this direction. Stakeholders are always eager to see nice pictures, while artifacts representing user flows and conceptual models receive much less attention and priority. They are too high-level and hardly usable for validation, and usually, not everyone can understand them.

    On the other side of the fidelity spectrum, interactive prototypes require too much effort to create and maintain, and creating live prototypes in code used to require special skills (and again, effort). And even when teams make this investment, they do so at the end of Solution Discovery, during the convergence stage, when it is often too late to experiment with fundamentally different ideas. With so much effort already sunk, there is little appetite to go back to the drawing board.

    It’s no surprise, then, that many teams default to the perceived safety of static mockups, seeing them as a middle ground between the roughness of the sketches and the overwhelming complexity and fragility that prototypes can have.

    As a result, validation with users doesn’t provide enough confidence that the solution will actually solve the problem, and teams are forced to make a leap of faith to start building. To make matters worse, they do so without a clear understanding of the conceptual model, the user flows, and the interactions, because from the very beginning, designers’ attention has been heavily skewed toward visualization.

    The result is often a design artifact that resembles the famous “horse drawing” meme: beautifully rendered in the parts everyone sees first (the mockups), but dangerously underdeveloped in its underlying structure (the conceptual model and flows).

    While this is a familiar problem across the industry, its severity depends on the nature of the project. If your core challenge is to optimize a well-understood, linear flow (like many B2C products), a mockup-centric approach can be perfectly adequate. The risks are contained, and the “lopsided horse” problem is unlikely to be fatal.

    However, it’s different for the systems I specialize in: complex applications defined by intricate data models and non-linear, interconnected user flows. Here, the biggest risks are not on the surface but in the underlying structure, and a lack of attention to the latter would be a recipe for disaster.

    Transforming The Design Process

    This situation makes me wonder:

    How might we close the gap between our design intent and a live prototype, so that we can iterate on real functionality from day one?

    If we were able to answer this question, we would:

    • Learn faster.
      By going straight from intent to a testable artifact, we cut the feedback loop from weeks to days.
    • Gain more confidence.
      Users interact with real logic, which gives us more proof that the idea works.
    • Enforce conceptual clarity.
      A live prototype cannot hide a flawed or ambiguous conceptual model.
    • Establish a clear and lasting source of truth.
      A live prototype, combined with a clearly documented design intent, provides the engineering team with an unambiguous specification.

    Of course, the desire for such a process is not new. This vision of a truly prototype-driven workflow is especially compelling for enterprise applications, where the benefits of faster learning and forced conceptual clarity are the best defense against costly structural flaws. But this ideal was still out of reach because prototyping in code took so much work and specialized talents. Now, the rise of powerful AI coding assistants changes this equation in a big way.

    The Seductive Promise Of “Vibe Coding”

    And the answer seems to be obvious: vibe coding!

    “Vibe coding is an artificial intelligence-assisted software development style popularized by Andrej Karpathy in early 2025. It describes a fast, improvisational, collaborative approach to creating software where the developer and a large language model (LLM) tuned for coding is acting rather like pair programmers in a conversational loop.”

    Wikipedia

    The original tweet by Andrej Karpathy:

    The allure of this approach is undeniable. If you are not a developer, you are bound to feel awe when you describe a solution in plain language, and moments later, you can interact with it. This seems to be the ultimate fulfillment of our goal: a direct, frictionless path from an idea to a live prototype. But is this method reliable enough to build our new design process around it?

    The Trap: A Process Without A Blueprint

    Vibe coding mixes up a description of the UI with a description of the system itself, resulting in a prototype based on changing assumptions rather than a clear, solid model.

    The pitfall of vibe coding is that it encourages us to express our intent in the most ambiguous way possible: by having a conversation.

    This is like hiring a builder and telling them what to do one sentence at a time without ever presenting them a blueprint. They could make a wall that looks great, but you can’t be sure that it can hold weight.

    I’ll give you one example illustrating problems you may face if you try to jump over the chasm between your idea and a live prototype relying on pure vibe coding in the spirit of Andrej Karpathy’s tweet. Imagine I want to prototype a solution to keep track of tests to validate product ideas. I open my vibe coding tool of choice (I intentionally don’t disclose its name, as I believe they all are awesome yet prone to similar pitfalls) and start with the following prompt:

    I need an app to track tests. For every test, I need to fill out the following data:
    - Hypothesis (we believe that...) 
    - Experiment (to verify that, we will...)
    - When (a single date, or a period) 
    - Status (New/Planned/In Progress/Proven/Disproven)
    

    And in a minute or so, I get a working prototype:

    Inspired by success, I go further:

    Please add the ability to specify a product idea for every test. Also, I want to filter tests by product ideas and see how many tests each product idea has in each status.
    

    And the result is still pretty good:

    But then I want to extend the functionality related to product ideas:

    Okay, one more thing. For every product idea, I want to assess the impact score, the confidence score, and the ease score, and get the overall ICE score. Perhaps I need a separate page focused on the product idea, with all the relevant information and related tests.
    

    And from this point on, the results are getting more and more confusing.

    The flow of creating tests hasn’t changed much. I can still create a bunch of tests, and they seem to be organized by product ideas. But when I click “Product Ideas” in the top navigation, I see nothing:

    I need to create my ideas from scratch, and they are not connected to the tests I created before:

    Moreover, when I go back to “Tests”, I see that they are all gone. Clearly something went wrong, and my AI assistant confirms that:

    No, this is not expected behavior — it’s a bug! The issue is that tests are being stored in two separate places (local state in the Index page and App state), so tests created on the main page don’t sync with the product ideas page.

    Sure, eventually it fixed that bug, but note that we encountered this just on the third step, when we asked to slightly extend the functionality of a very simple app. The more layers of complexity we add, the more roadblocks of this sort we are bound to face.

    Also note that this specific problem of a not fully thought-out relationship between two entities (product ideas and tests) is not isolated at the technical level, and therefore, it didn’t go away once the technical bug was fixed. The underlying conceptual model is still broken, and it manifests in the UI as well.

    For example, you can still create “orphan” tests that are not connected to any item from the “Product Ideas” page. As a result, you may end up with different numbers of ideas and tests on different pages of the app:

    Let’s diagnose what really happened here. The AI’s response that this is a “bug” is only half the story. The true root cause is a conceptual model failure. My prompts never explicitly defined the relationship between product ideas and tests. The AI was forced to guess, which led to the broken experience. For a simple demo, this might be a fixable annoyance. But for a data-heavy enterprise application, this kind of structural ambiguity is fatal. It demonstrates the fundamental weakness of building without a blueprint, which is precisely what vibe coding encourages.

    Don’t take this as a criticism of vibe coding tools. They are creating real magic. However, the fundamental truth about “garbage in, garbage out” is still valid. If you don’t express your intent clearly enough, chances are the result won’t fulfill your expectations.

    Another problem worth mentioning is that even if you wrestle it into a state that works, the artifact is a black box that can hardly serve as reliable specifications for the final product. The initial meaning is lost in the conversation, and all that’s left is the end result. This makes the development team “code archaeologists,” who have to figure out what the designer was thinking by reverse-engineering the AI’s code, which is frequently very complicated. Any speed gained at the start is lost right away because of this friction and uncertainty.

    From Fast Magic To A Solid Foundation

    Pure vibe coding, for all its allure, encourages building without a blueprint. As we’ve seen, this results in structural ambiguity, which is not acceptable when designing complex applications. We are left with a seemingly quick but fragile process that creates a black box that is difficult to iterate on and even more so to hand off.

    This leads us back to our main question: how might we close the gap between our design intent and a live prototype, so that we can iterate on real functionality from day one, without getting caught in the ambiguity trap? The answer lies in a more methodical, disciplined, and therefore trustworthy process.

    In Part 2 of this series, “A Practical Guide to Building with Clarity”, I will outline the entire workflow for Intent Prototyping. This method places the explicit intent of the designer at the forefront of the process while embracing the potential of AI-assisted coding.

    Thank you for reading, and I look forward to seeing you in Part 2.

  • Ambient Animations In Web Design: Principles And Implementation (Part 1)

    Unlike timeline-based animations, which tell stories across a sequence of events, or interaction animations that are triggered when someone touches something, ambient animations are the kind of passive movements you might not notice at first. But, they make a design look alive in subtle ways.

    In an ambient animation, elements might subtly transition between colours, move slowly, or gradually shift position. Elements can appear and disappear, change size, or they could rotate slowly.

    Ambient animations aren’t intrusive; they don’t demand attention, aren’t distracting, and don’t interfere with what someone’s trying to achieve when they use a product or website. They can be playful, too, making someone smile when they catch sight of them. That way, ambient animations add depth to a brand’s personality.

    To illustrate the concept of ambient animations, I’ve recreated the cover of a Quick Draw McGraw comic book (PDF) as a CSS/SVG animation. The comic was published by Charlton Comics in 1971, and, being printed, these characters didn’t move, making them ideal candidates to transform into ambient animations.

    FYI: Original cover artist Ray Dirgo was best known for his work drawing Hanna-Barbera characters for Charlton Comics during the 1970s. Ray passed away in 2000 at the age of 92. He outlived Charlton Comics, which went out of business in 1986, and DC Comics acquired its characters.

    Tip: You can view the complete ambient animation code on CodePen.

    Choosing Elements To Animate

    Not everything on a page or in a graphic needs to move, and part of designing an ambient animation is knowing when to stop. The trick is to pick elements that lend themselves naturally to subtle movement, rather than forcing motion into places where it doesn’t belong.

    Natural Motion Cues

    When I’m deciding what to animate, I look for natural motion cues and think about when something would move naturally in the real world. I ask myself: “Does this thing have weight?”, “Is it flexible?”, and “Would it move in real life?” If the answer’s “yes,” it’ll probably feel right if it moves. There are several motion cues in Ray Dirgo’s cover artwork.

    For example, the peace pipe Quick Draw’s puffing on has two feathers hanging from it. They swing slightly left and right by three degrees as the pipe moves, just like real feathers would.

    #quick-draw-pipe {
      animation: quick-draw-pipe-rotate 6s ease-in-out infinite alternate;
    }
    
    @keyframes quick-draw-pipe-rotate {
      0% { transform: rotate(3deg); }
      100% { transform: rotate(-3deg); }
    }
    
    #quick-draw-feather-1 {
      animation: quick-draw-feather-1-rotate 3s ease-in-out infinite alternate;
    }
    
    #quick-draw-feather-2 {
      animation: quick-draw-feather-2-rotate 3s ease-in-out infinite alternate;
    }
    
    @keyframes quick-draw-feather-1-rotate {
      0% { transform: rotate(3deg); }
      100% { transform: rotate(-3deg); }
    }
    
    @keyframes quick-draw-feather-2-rotate {
      0% { transform: rotate(-3deg); }
      100% { transform: rotate(3deg); }
    }
    

    Atmosphere, Not Action

    I often choose elements or decorative details that add to the vibe but don’t fight for attention.

    Ambient animations aren’t about signalling to someone where they should look; they’re about creating a mood.

    Here, the chief slowly and subtly rises and falls as he puffs on his pipe.

    #chief {
      animation: chief-rise-fall 3s ease-in-out infinite alternate;
    }
    
    @keyframes chief-group-rise-fall {
      0% { transform: translateY(0); }
      100% { transform: translateY(-20px); }
    }
    

    For added effect, the feather on his head also moves in time with his rise and fall:

    #chief-feather-1 {
      animation: chief-feather-1-rotate 3s ease-in-out infinite alternate;
    }
    
    #chief-feather-2 {
      animation: chief-feather-2-rotate 3s ease-in-out infinite alternate;
    }
    
    @keyframes chief-feather-1-rotate {
      0% { transform: rotate(0deg); }
      100% { transform: rotate(-9deg); }
    }
    
    @keyframes chief-feather-2-rotate {
      0% { transform: rotate(0deg); }
      100% { transform: rotate(9deg); }
    }
    

    Playfulness And Fun

    One of the things I love most about ambient animations is how they bring fun into a design. They’re an opportunity to demonstrate personality through playful details that make people smile when they notice them.

    Take a closer look at the chief, and you might spot his eyebrows raising and his eyes crossing as he puffs hard on his pipe. Quick Draw’s eyebrows also bounce at what look like random intervals.

    #quick-draw-eyebrow {
      animation: quick-draw-eyebrow-raise 5s ease-in-out infinite;
    }
    
    @keyframes quick-draw-eyebrow-raise {
      0%, 20%, 60%, 100% { transform: translateY(0); }
      10%, 50%, 80% { transform: translateY(-10px); }
    }
    

    Keep Hierarchy In Mind

    Motion draws the eye, and even subtle movements have a visual weight. So, I reserve the most obvious animations for elements that I need to create the biggest impact.

    Smoking his pipe clearly has a big effect on Quick Draw McGraw, so to demonstrate this, I wrapped his elements — including his pipe and its feathers — within a new SVG group, and then I made that wobble.

    #quick-draw-group {
      animation: quick-draw-group-wobble 6s ease-in-out infinite;
    }
    
    @keyframes quick-draw-group-wobble {
      0% { transform: rotate(0deg); }
      15% { transform: rotate(2deg); }
      30% { transform: rotate(-2deg); }
      45% { transform: rotate(1deg); }
      60% { transform: rotate(-1deg); }
      75% { transform: rotate(0.5deg); }
      100% { transform: rotate(0deg); }
    }
    

    Then, to emphasise this motion, I mirrored those values to wobble his shadow:

    #quick-draw-shadow {
      animation: quick-draw-shadow-wobble 6s ease-in-out infinite;
    }
    
    @keyframes quick-draw-shadow-wobble {
      0% { transform: rotate(0deg); }
      15% { transform: rotate(-2deg); }
      30% { transform: rotate(2deg); }
      45% { transform: rotate(-1deg); }
      60% { transform: rotate(1deg); }
      75% { transform: rotate(-0.5deg); }
      100% { transform: rotate(0deg); }
    }
    

    Apply Restraint

    Just because something can be animated doesn’t mean it should be. When creating an ambient animation, I study the image and note the elements where subtle motion might add life. I keep in mind the questions: “What’s the story I’m telling? Where does movement help, and when might it become distracting?”

    Remember, restraint isn’t just about doing less; it’s about doing the right things less often.

    Layering SVGs For Export

    In “Smashing Animations Part 4: Optimising SVGs,” I wrote about the process I rely on to “prepare, optimise, and structure SVGs for animation.” When elements are crammed into a single SVG file, they can be a nightmare to navigate. Locating a specific path or group can feel like searching for a needle in a haystack.

    That’s why I develop my SVGs in layers, exporting and optimising one set of elements at a time — always in the order they’ll appear in the final file. This lets me build the master SVG gradually by pasting it in each cleaned-up section.

    I start by exporting background elements, optimising them, adding class and ID attributes, and pasting their code into my SVG file.

    Then, I export elements that often stay static or move as groups, like the chief and Quick Draw McGraw.

    Before finally exporting, naming, and adding details, like Quick Draw’s pipe, eyes, and his stoned sparkles.

    Since I export each layer from the same-sized artboard, I don’t need to worry about alignment or positioning issues as they all slot into place automatically.

    Implementing Ambient Animations

    You don’t need an animation framework or library to add ambient animations to a project. Most of the time, all you’ll need is a well-prepared SVG and some thoughtful CSS.

    But, let’s start with the SVG. The key is to group elements logically and give them meaningful class or ID attributes, which act as animation hooks in the CSS. For this animation, I gave every moving part its own identifier like #quick-draw-tail or #chief-smoke-2. That way, I could target exactly what I needed without digging through the DOM like a raccoon in a trash can.

    Once the SVG is set up, CSS does most of the work. I can use @keyframes for more expressive movement, or animation-delay to simulate randomness and stagger timings. The trick is to keep everything subtle and remember I’m not animating for attention, I’m animating for atmosphere.

    Remember that most ambient animations loop continuously, so they should be lightweight and performance-friendly. And of course, it’s good practice to respect users who’ve asked for less motion. You can wrap your animations in an @media prefers-reduced-motion query so they only run when they’re welcome.

    @media (prefers-reduced-motion: no-preference) {
      #quick-draw-shadow {
        animation: quick-draw-shadow-wobble 6s ease-in-out infinite;
      }
    }
    

    It’s a small touch that’s easy to implement, and it makes your designs more inclusive.

    Ambient Animation Design Principles

    If you want your animations to feel ambient, more like atmosphere than action, it helps to follow a few principles. These aren’t hard and fast rules, but rather things I’ve learned while animating smoke, sparkles, eyeballs, and eyebrows.

    Keep Animations Slow And Smooth

    Ambient animations should feel relaxed, so use longer durations and choose easing curves that feel organic. I often use ease-in-out, but cubic Bézier curves can also be helpful when you want a more relaxed feel and the kind of movements you might find in nature.

    Loop Seamlessly And Avoid Abrupt Changes

    Hard resets or sudden jumps can ruin the mood, so if an animation loops, ensure it cycles smoothly. You can do this by matching start and end keyframes, or by setting the animation-direction to alternate the value so the animation plays forward, then back.

    Use Layering To Build Complexity

    A single animation might be boring. Five subtle animations, each on separate layers, can feel rich and alive. Think of it like building a sound mix — you want variation in rhythm, tone, and timing. In my animation, sparkles twinkle at varying intervals, smoke curls upward, feathers sway, and eyes boggle. Nothing dominates, and each motion plays its small part in the scene.

    Avoid Distractions

    The point of an ambient animation is that it doesn’t dominate. It’s a background element and not a call to action. If someone’s eyes are drawn to a raised eyebrow, it’s probably too much, so dial back the animation until it feels like something you’d only catch if you’re really looking.

    Consider Accessibility And Performance

    Check prefers-reduced-motion, and don’t assume everyone’s device can handle complex animations. SVG and CSS are light, but things like blur filters and drop shadows, and complex CSS animations can still tax lower-powered devices. When an animation is purely decorative, consider adding aria-hidden="true" to keep it from cluttering up the accessibility tree.

    Quick On The Draw

    Ambient animation is like seasoning on a great dish. It’s the pinch of salt you barely notice, but you’d miss when it’s gone. It doesn’t shout, it whispers. It doesn’t lead, it lingers. It’s floating smoke, swaying feathers, and sparkles you catch in the corner of your eye. And when it’s done well, ambient animation adds personality to a design without asking for applause.

    Now, I realise that not everyone needs to animate cartoon characters. So, in part two, I’ll share how I created animations for several recent client projects. Until next time, if you’re crafting an illustration or working with SVG, ask yourself: What would move if this were real? Then animate just that. Make it slow and soft. Keep it ambient.

    You can view the complete ambient animation code on CodePen.

  • These are the flying discs the government wants you to know about

    Four small satellites rode a Rocket Lab Electron launch vehicle into orbit from Virginia early Thursday, beginning a government-funded technology demonstration mission to test the performance of a new spacecraft design.

    The satellites were nestled inside a cylindrical dispenser on top of the 59-foot-tall (18-meter) Electron rocket when it lifted off from NASA’s Wallops Flight Facility at 12:03 am EST (05:03 UTC). A little more than an hour later, the rocket’s upper stage released the satellites one at a time at an altitude of about 340 miles (550 kilometers).

    The launch was the starting gun for a “proof of concept” mission to test the viability of a new kind of satellite called DiskSats. These satellites were designed by the Aerospace Corporation, a nonprofit federally funded research and development center. The project is jointly financed by NASA and the US Space Force, which paid for DiskSat’s development and launch, respectively.

    Read full article

    Comments

  • For the lazy techie: These are Ars staff’s last-minute holiday gift picks

    The holidays have snuck up on us. How is it already that time?

    If you’re on top of things and have already bought all your Christmas gifts, I commend you. Not all of us are so conscientious. In fact, one of us is so behind on holiday prep that he is not only running late on buying gifts; he’s also behind on publishing the Ars staff gift guide he said he’d write. (Whoever could we be talking about?)

    So for my fellow last-minute scramblers, I polled Ars writers and editors for gift ideas they know will be solid because they’ve actually used them. As such, you’ll find gift options below that Ars staffers have used enough to feel good about recommending. Further, I made sure all of these are available for delivery before Christmas as of today, at least where I live.

    Read full article

    Comments

  • Does swearing make you stronger? Science says yes.

    If you’re human, you’ve probably hollered a curse word or two (or three) when barking your shin on a table edge or hitting your thumb with a hammer. Perhaps you’ve noticed that this seems to lessen your pain. There’s a growing body of scientific evidence that this is indeed the case. The technical term is the “hypoalgesic effect of swearing.” Cursing can also improve physical strength and endurance, according to a new paper published in the journal American Psychologist.

    As previously reported, co-author Richard Stephens, a psychologist at Keele, became interested in studying the potential benefits of profanity after noting his wife’s “unsavory language” while giving birth and wondered if profanity really could help alleviate pain. “Swearing is such a common response to pain. There has to be an underlying reason why we do it,” Stephens told Scientific American after publishing a 2009 study that was awarded the 2010 Ig Nobel Peace Prize.

    For that study, Stephens and his colleagues asked 67 study participants (college students) to immerse their hands in a bucket of ice water. They were then instructed to either swear repeatedly using the profanity of their choice or chant a neutral word. Lo and behold, the participants said they experienced less pain when they swore and were also able to leave their hands in the bucket about 40 seconds longer than when they weren’t swearing. It has been suggested that this is a primitive reflex that serves as a form of catharsis.

    Read full article

    Comments

  • Formula 1 is deploying new jargon for 2026

    While not quite a separate dialect, Formula 1-speak can be heavy on the jargon at times. They say “box” instead of pit, “power unit” to describe the engine and hybrid system, and that’s before we get into all the aerodynamics-related expressions like “outwash” and “dirty air.” Next year is a big technical shakeup for the sport, and it seems we’re getting some new terminology to go with it. So forget your DRS and get ready to talk about Boost mode instead.

    The F1 car of 2026 will be slightly narrower and slightly lighter than the machines that raced for the last time earlier this month. But not by a huge amount: minimum weight is decreased by 30 kg to 724 kg, the wheelbase is 200 mm shorter at 3,400 mm, and the car’s underfloor is 150 mm narrower than before.

    The front wing is 100 mm narrower and has just two elements to it, although for the first time in F1 history, this is now an active wing, which works in conjunction with the three-element active rear wing. Active rear wings have been a thing in F1 since the introduction of DRS—the drag reduction system—in 2011, but now there’s a philosophical change to how they’ll work.

    Read full article

    Comments

  • 豆包手机:AI革命的昙花一现与流量封杀

    nubia M153搭载的豆包手机助手,在2025年掀起了一场AI手机的狂欢。这款设备通过系统级Agent实现”意图即应用”的交互革命,仅凭语音指令就能跨平台操作所有App。然而短短7天后,它遭遇了微信、淘宝等巨头的联合封杀——这场闪电般的围剿揭示了一个残酷现实:AI正在挑战移动互联网时代的流量霸权与数据主权。

    2025年12月1日,一款名为“nubia M153”的工程样机横空出世。它没有顶级的摄像头,也没有极致的屏幕,却在几分钟内被抢购一空,二手市场甚至炒至万元。这就是搭载了豆包手机助手的“AI手机”。由字节跳动与中兴合作推出,它承诺的不是更快的处理器,而是一个全新的世界:你只需要动嘴,剩下的交给AI。

    然而,这场狂欢仅仅持续了不到一周。12月8日,微信强制下线、淘宝风控报警、银行App拒绝服务……这款被视为“AI时代iPhone”的产品,在上线短短几天后,遭遇了互联网巨头的联合“围剿”。这不仅仅是一款产品的失败,更是一场关于未来流量入口的残酷战争。

    一、一句指令,接管所有APP

    豆包手机的核心卖点不是普通AI助手的查天气、设闹钟,而是对日常App的“全自动接管”——用户无需手动操作任何软件,仅凭一句话就能完成跨平台复杂任务。

    • 购物场景:想买东西,无需逐一打开淘宝、京东、拼多多。只需说“帮我找一件200块以内的黑色卫衣,在三大平台比个价,把最便宜的加购物车”。手机屏幕自动亮起,AI接管了操作。豆包自动检索、对比价格、筛选商品,全程无需用户盯着屏幕,还可以切到后台运行;
    • 出行场景:规划出行,只需说“订明天下午3点上海到北京最便宜的机票,再约一个机场到公司的接机服务”,它就能联动携程、滴滴等App完成订票、下单;
    • 生活服务:说明口味偏好与预算后,AI 会在美团、饿了么筛选最优外卖选项,完成支付前的所有操作(支付环节需手动确认以保障安全)。

    以上全程无需人工干预。

    这不仅仅是效率的提升,这是对智能手机交互逻辑的彻底颠覆。你不需要再打开美团看首页推荐,不需要刷抖音找灵感,不需要点开微信翻找聊天记录。你只需要表达你的意图,AI就是你的“手”和“眼”,在各个App之间自由穿梭,为你打工。

    这意味着,手机的交互中心从“一个个孤立的图标(App)”,转移到了一个“统一的智能体(Agent)”。 豆包手机试图定义的,不是一个新的功能,而是一种新的范式:“意图即应用”。你无需寻找和打开应用,只需发出指令,手机便会调用全世界应用来为你服务。

    二、封禁的必然:捅破了巨头的“流量金库”

    为什么豆包手机会死得这么快?为什么巨头们会如此恐慌,以至于不惜一切代价进行封杀?

    1. 流量漏斗的崩塌

    在过去的移动互联网时代,流量就是巨头的生命线,它们早已构建起一套成熟的“注意力变现”模式。以淘宝买衣服为例,常规流程:打开淘宝后,会先看到首页的开屏广告、推荐信息流,再通过搜索框查找商品,过程中还要浏览不同店铺的详情页、对比评价,往往花了大半天才能完成下单。有时候挑礼物,光是搜索相关知识、对比不同产品就耗掉了整整一下午。而这漫长的过程,正是平台的盈利核心——首页广告位、信息流推荐、竞价排名,这些都是阿里、美团等公司的主要营收来源。

    但豆包手机助手的出现,彻底打破了这套规则。

    当用户无需打开淘宝首页、无需刷信息流就能完成购物,平台精心设计的广告位就成了“摆设”,广告商自然不会再花钱投放;当豆包直接帮用户完成全网比价,淘宝的竞价排名失去了意义,商家也无需再为排名付费。

    更致命的是,这种模式几乎适用于所有场景:用豆包助手自动回复微信消息,用户就不会再刷朋友圈,微信的广告收入会大幅缩水;用它自动处理外卖、出行需求,美团、携程的首页推荐流量也会骤降。对于这些巨头而言,豆包不是一个简单的工具,而是一个“流量掠夺者”,它将用户的注意力从超级App转移到自己身上,直接动摇了整个移动互联网的商业根基。

    2. “越权” 的系统级威胁

    微信、淘宝、美团,这些App之所以超级,是因为它们占据了手机桌面的第一入口。但豆包手机助手是系统级的Agent(智能体),它能够直接调用各大App的功能,而无需通过App的“同意”。

    • 对微信来说: 你用AI回消息,就不看朋友圈,不刷视频号,微信的广告收入因此受到重创。
    • 对淘宝来说: 你用AI比价,只买最便宜的,不看直播,不逛店铺,直接影响了淘宝的GMV(成交总额)和商业生态。
    • 对银行来说: AI拥有模拟点击的底层权限(INJECT_EVENTS),这成为了一个潜在的巨大资金安全隐患。

    在这种情况下,巨头们若不采取行动,他们的流量和收入模式将受到威胁。于是,它们选择联手封杀豆包手机,防止被AI“降维打击”。

    3. 数据主权与生态霸权的争夺

    巨头逻辑:每个App都是一个“数据孤岛”或“围墙花园”。你在淘宝的行为数据,是淘宝的资产;你在微信的社交图谱,是微信的核心壁垒。它们用这些数据训练自己的算法,向你推送广告和服务,形成商业闭环。

    豆包逻辑:作为系统级Agent,它试图打通所有数据孤岛。它能看到你在淘宝比价、在美团点餐、在微信聊天,从而为你提供全局最优解。但这相当于要拆掉所有花园的围墙,动摇了巨头商业模式的根基——数据垄断。封杀它,不是封杀一个功能,而是保卫自己的数据主权。

    除此之外,字节与巨头的天然竞争关系,也注定了豆包的困境。抖音与微信的流量之争早已是公开的秘密,连抖音链接都无法直接分享到微信,足以说明底层生态的壁垒的坚固。

    三、未来预测:谁能真正掌握AI入口

    从行业格局来看,最终能掌握AI入口的,绝不会是字节这种单纯的模型公司,而更可能是没有直接竞争关系、或占据底层生态的玩家——比如华为、小米等硬件厂商。

    • 底层适配能力:自有手机品牌与操作系统深度绑定,能避免 “模拟点击” 等违规操作,通过官方权限实现合规的跨场景协同;
    • 生态中立性:与腾讯、阿里等巨头无直接流量竞争,可通过 “能力赋能” 实现共赢(如为淘宝提供内置 AI 比价技术,按效果分成);
    • 硬件支撑:能针对 AI 算力需求优化芯片与续航,解决豆包在工程机上暴露的 “发热、卡顿” 等问题。

    豆包手机助手或许会成为历史,但它留下的火种不会熄灭。它用一种近乎悲壮的方式,告诉了所有人:用户的需求是真实的,解放双手的愿望是强烈的。虽然目前它被巨头的生态围墙撞得头破血流,但它证明了App时代的规则,在AI时代就是“枷锁”。

    正如抖音集团副总裁李亮所言:“AI带来的变革是真实存在的……不论这次是不是会成功,但AI一定是未来。”

    本文由 @王小佳 原创发布于人人都是产品经理。未经作者许可,禁止转载

    题图来自Unsplash,基于CC0协议

    该文观点仅代表作者本人,人人都是产品经理平台仅提供信息存储空间服务

  • 深度分析:2026年消费趋势及底层心理逻辑

    2026年的消费市场将迎来一场深刻的变革。当AI技术全面渗透生活,消费逻辑正从‘更多’转向‘更准’,世代差异与心理账户理论交织出全新的价值图谱。本文剖析Z世代到银发族的消费策略演变,揭示‘情绪出口’‘时间成本’‘心理账户’三大趋势如何重构商业竞争规则,带你看懂深度价值时代消费者的决策密码。

    2025年,消费市场的“慢增长”已成定局,背后一方面是市场“K型分化”加剧,高端奢华与大众性价比两极化狂奔;二是 “人工智能+”从概念沉入生活,AI从营销工具变为潜移默化影响人们生活的底层架构。

    这促使我们思考:当增长红利褪去,什么才是后时代真正的引擎?

    展望2026,答案将是 “深度价值” 。消费不再关于“更多”,而关于“更准”。更精准的价值精算、更极致的理感平衡、更沉浸的生活经营。市场将进入一个由“意义”与“共识”驱动的新阶段。2026又会有哪些值得期待的消费趋势?

    一、不同世代的消费特征差异

    我们从未经历像如今这样深刻、复杂、多变的社会大环境,因此现在的消费者很难用单一的画像来描绘,他们在宏观不确定性中进化,呈现出一种 “战略性消费” 的共性:他们如同谨慎的投资者,每一次支付都在为理想的生活、明确的身份和内心的秩序进行“价值投资”。这种投资行为,在世代间展现出迥异的策略与焦点。

    来源:尼尔森《通往2026:中国消费者趋势前瞻》

    01 Z世代(1995-2009):圈层价值投资者

    他们认为消费是构建身份、进入圈层的“社交资本”。他们为热爱与认同付费,决策高度依赖社群信任与价值观共鸣。

    因此极度重视消费带来的圈层归属感与价值观表达。商品的实际功能仅是基底,其附加的社群话题度、文化归属感才是决定溢价的关键。

    02 千禧一代 (1980-1994):精算平衡大师

    他们是家庭与自我的“首席运营官”。消费决策中充满权衡,在确保生活基本盘品质与效率的同时,为长期的身心健康与家庭情感储备预算。

    因而会综合考量产品的情感回报、体验品质与长期耐用性。他们是为确定性付费的主力,愿意为可靠的健康方案、高效的家政服务或深度的家庭旅行体验支付溢价。

    03 X世代(1965-1979):务实守卫者

    X世代认为消费是家庭安稳的基石,倾向于选择经过时间验证的品牌与产品,追求“一次到位”的省心与可靠。

    他们首要关注产品的实质功效、安全性与耐久性。他们是“家庭健康”与“资产稳健”概念的核心响应者,消费是为整个家庭构筑确定性的防护网。

    04银发族(1946-1964):乐活体验探索家

    他们是积极拥抱数字生活的新潮银发族。消费重心从物质积累转向生活拓展,乐于为提升生活便利、丰富社交与精神享受的品质服务付费。

    高度看重产品与服务的易用性、社交属性及带来的即时愉悦。他们正重新定义“银发经济”,推动市场从基础养老向“活力乐享”快速升级。

    二、2026,消费的根本逻辑正在发生改变

    各类AI产品正在把效率推向极致,算法切割了我们的生活碎片,带来了极致的、理性的压抑,这催生了大众对“情绪出口”的渴求。世代图谱为我们画出了“谁在消费”,而2026年真正的变革,藏在“如何消费”与“为何消费”的底层逻辑里。消费者仿佛集体进修了经济学与心理学,表面上看,是人们在买不同的东西。但真正关键的改变,藏在人们心里那杆秤是怎么变的。2026年的核心故事,不是关于“买什么”,而是关于人们“怎么决定买”和“为什么觉得值”。

    理性世界的压抑与冰冷催生感性世界的心理需求

    消费这件事,正在从一个简单的买卖行为,变成每个人经营自己生活、构建自我意义的一套复杂方法。他们的决策模式正在发生三个深刻而具体的转向,这直接决定了品牌的成败。

    趋势一:从看价格,到估计价值

    消费者的决策行为,本质上在运行一个核心公式:顾客决策价值 = 感知总利益-感知总成本。

    图示:顾客决策价值模型

    公式没有变,但消费者计入“利益”与“成本”的项目截然不同,彻底颠覆了传统的计算逻辑。

    01 人们开始为“感受”和“认同”买单

    过去,产品的利益主要是功能性的。如今的消费者不再单纯只考虑产品的功能价值,而扩展出了更深刻的内涵:

    • 情绪利益:产品能否提供确定性的愉悦、安心或治愈感。就像高端香薰蜡烛,消费者支付数倍于普通香薰的价格,核心购买的不再是香味,而是购买一个 “专属的放松角落”或“沉浸的心流空间” 。品牌竞争的是谁能更精准地定义并兑现一种抽象的情绪体验。

    来源:Social Beta《2025 年轻人情绪消费趋势报告》

    • 社会利益:消费行为能否带来圈层认同或价值观的表达。这尤其体现在火爆的IP联名消费中。就像泡泡玛特与《疯狂动物城2》的联名盲盒隐藏款,价格也从69元最高涨至399元。消费者支付的惊人溢价,购买的不仅是玩具本身,更是其作为 “同好圈层通行证” 和 “特定文化审美代言人” 的社交货币价值。

    02 人们开始计算“时间”和“心力”成本

    与此同时,消费者对成本的计算变得极为精细。货币价格只是显性的一部分,他们开始高度重视并极力压缩另外两项隐性成本:

    • 决策成本:包括信息搜寻、对比分析、以及担心买错所带来的焦虑所耗费的时间与心力。那些能提供极致透明信息(如完整成分溯源)、或通过权威测评与口碑推荐降低用户信任门槛的品牌,实质上是在帮消费者削减这项关键成本。

    来源:益普索《2025年顾客体验全球洞察报告中国篇》

    • 持有成本:这包括产品的维护成本、转售残值,以及不符合可持续发展理念所带来的“道德负担”。模块化设计、易于维修的产品、提供官方二手回收渠道的服务,都是在直接降低消费者的长期持有成本,从而显著提升“值价比”。

    趋势二:为生活省钱,为自我花钱

    消费者们展现出特别的理性与感性并存,但这种“理感共生”并非简单的节俭与奢侈并存,其底层运行机制是行为经济学中的 “心理账户”理论。消费者会像管理一个家庭账簿一样,在心中为不同的生活目标和人生角色开设独立账户,并执行着严格的 “分类预算、专款专用” 原则。

    01 责任账户:为生活必需品买单

    这个账户对应着作为社会人、家庭成员的基本责任与日常运转,例如衣食住行、水电房贷。消费者对这一账户的态度是高度理性和追求确定性的,目标是“完成任务”并最小化支出。

    来源:知萌《2026年十大消费趋势》

    因此,他们热衷于使用比价工具、购买大包装日用消耗品、等待折扣。这里的决策逻辑是成本控制,追求的是“不出错”和“高效率”。品牌若想进入这个账户,就必须提供无可争议的性价比、可靠性或便捷性,成为一个“不出错的解决方案”。

    02 自我账户:为理想人生买单

    人们将省下的预算,投入到能带来即时、确定性情绪回报或鲜明社会身份的消费中。这个账户对应着对“理想自我”的投资与建设,关乎健康、学习、兴趣、情感连接与精神满足。在为理想自我花钱时(如爱好、旅行),人们则愿意溢价,购买的是“更好的未来可能性”。

    来源:知萌《2026年十大消费趋势》

    因此你可能会看到刚毕业工作的职场年轻人斥一个月的工资买下曼哈顿音箱,或是父母们为“儿童友好”的产品标签愿意接受更高的价格。

    这里的决策逻辑是价值投资,购买的是“更好的未来可能性”。品牌若想进入这个心理账户,就必须证明自己不仅是商品,更是能助力用户实现某种人生目标的伙伴或工具。

    趋势三:消费不再只是占有,而是体验

    在物质条件发展的当下,当物质拥有带来的满足感边际效益递减,消费的核心功能便发生了根本性转移:从占有物品,转向通过消费兑换滋养人生的特定体验,以此完成对更高层次需求的追寻。

    01 为“在场感”付费

    消费开始服务于对独特“时空”的占有。人们购买的,是一段从日常中抽离、能全身心投入的 “专属时间” 和 “在场氛围” 。

    这背后的底层逻辑对应着对社交、尊重与自我实现需求的混合追求。一次精心策划的旅行、一场沉浸式演出,本质是购买一个进入另一种生活节奏或文化情境的 “临时通行证”。

    因此在2026年“在地潮生”和“心灵游牧”的融合将更明显。消费者不再满足于作为旁观者打卡,而是追求 “临场创造”,去景德镇不仅参观,更要亲手烧制一件瓷器;去成都探索社区隐秘小店的“城市漫步”他们不是来花钱,而是来自己参与创造的、不可复制的记忆与故事。

    02 为自我进阶投资

    消费正彻底告别单纯的享乐主义,进化为一种面向未来的自我养成。人们愿意支付的,也不是体验的瞬时快感,而是体验所能带来的、可内化的能力提升与状态跃迁。这背后的底层逻辑是是消费从“为感受付费”升级为 “为结果付费” 。其核心诉求是 “通过这次消费,我变成了一个更有技能、更健康、更具认知优势的人”。

    来源:知萌《2026年十大消费趋势》

    消费成为调节情绪、构建内心秩序的语言。超过56%的年轻受访者为“情感支持类”产品/服务付过费。这包括了订阅正念冥想APP、参加身心疗愈工作坊,或是购买能营造宁静氛围的家居香薰。人们通过这些消费,投资于更稳定、更具掌控感的心理状态,直接服务于“成为情绪更稳定的自己”这个成长目标。

    结语

    未来市场的话语权已经彻底转向买方,每一次支付都是消费者为其认同的价值、向往的生活以及期待的自我所投下的明确选票。

    这要求品牌必须超越表面热点的追逐,去深刻理解那些驱动决策的稳固人性逻辑。未来真正被需要的品牌,将是消费者价值公式里的优先项、心理账户里的长期资产,以及生活策展中不可或缺的伙伴。

    最终,所有商业都需回归一个根本命题,你究竟为何而存在。那个能够给出清晰且动人答案的品牌,才能赢得2026年及其之后的时代。

    本文由 @打工赚钱养小猫 原创发布于人人都是产品经理。未经作者许可,禁止转载

    题图来自Unsplash,基于CC0协议

  • 7486条内容种草实战:饱和攻击失效后,品牌该如何做好2026年的种草?

    2026年种草营销正面临“真实性崩塌”危机:饱和式投放、模板化内容与AI生成泛滥,正在将用户信任推向临界点。本文系统拆解舒泽团队服务50+品牌的实战方法论,从精准狙击、养草资产沉淀到用户共创与角色升维,揭示种草从“告知”转向“证明”的底层逻辑,并预警AI内容泛滥下“真人真实”将成为新信任门槛。

    过去一年半的时间里,舒泽一共为50+品牌提供了增长策略咨询。

    如果单纯从内容种草而言,舒泽团队一共投放了7486条内容,相当于月均400+条,分布在小红书、抖音、知乎、B站等平台。这些内容,有的是从0开始启动的新品牌,有的是老品牌遭遇增长瓶颈进行赛道换新,也有的是品牌陷入舆情之中老板想着救一救冲一冲,甚至还有的是品牌广告内容做得太多了想回归下心智……

    在舒泽介入之前,很多品牌其实做得已经蛮满的(注意,我说的是“满”,而不是“好”)。他们疯狂投KOL、铺KOC、堆素人、垒关键词,试图用数量淹没算法。特别是在做KOC内容的时候,很多团队为了心里踏实,把brief直接写成了另一版本的产品说明书,恨不得把所有的内容都塞进KOC的嘴里,以便于不放过每一个关键词位。同时,直接把预算、档期、人力都用饱和式的攻击办法推拉到极限,像极了想练大块头又没有专业方法只能把重量拉满的增肌男。

    即便如此拉满,在咨询过程中,很多老板/品牌部/市场部/营销部的负责人还是常常问:为啥越做,感觉品牌越使不上劲儿?

    *先做一个总结性的回答:这种饱和攻击的失效,如果2025年是因为流量拥挤,那么2026年的挑战将是真实性崩塌,所以如果方法不对,只能是做多错多,越来越使不上劲儿。

    01 饱和攻击的现状:品牌方、用户、达人三方越做越难

    其实,这种饱和攻击的背后是品牌方、用户、达人三方共同的难题。

    对于品牌方来说,钱花出去了,但是心智没占住。

    无论是QuestMobile显示的移动应用增长成本的逐年增加趋势还是中国互联网普及率的客观数据,都在说明一个问题:流量没有变多,但争抢流量的人变多了。

    有一个洗护品牌,2023年在小红书月均投放内容超过150篇,其中头部商单约18-20个(单个均价约1.4万元左右),剩下的为一些铺量内容;到了2024年下半年,特别是2025年上半年,同样的预算,CPE却涨了27.4%,笔记的自然流量也下降36.7%。

    为什么?因为平台的内容池太满了,特别是小红书和抖音。用户在APP的时间是有限的,但是平台的内容确实在指数级的增长,这就导致你的笔记要想被看到,要么砸更多的钱投流,要么被算法淹没在信息流里。

    但今天,有一个更为扎心的现实就是:就算这些内容被看到了,用户也不再买账了,更何况谈占领心智呢。其实,舒泽想说:当你按下给品牌种草变成种广告的那一个按钮后,心智占领就变成了心智污染。

    对于用户来说,我只是想看点真的东西,好的不好的,但就是看不到。

    舒泽在2025年5月的时候让团队做了一个小的调研,虽然样本数比较少,只有173个用户,但是背后的态度趋势值得重视。

    其中有一个核心关键问题是:你现在还相信,那些素人的种草吗?

    其中有162个回答是:不信。

    同样基于身边53个真实社交圈的好友调研后,也有48个好友反馈不信,其中甚至有26个直接吐槽起了对应的品牌,甚至这些品牌的种草内容变成了用户的避雷内容。

    对于什么是会变成品牌负资产的低质内容,舒泽结合真实的用户反馈,总结了这样三种雷区:

    1.模版化套路

    比如“姐妹们,这个绝了!用了一周真的是明显白了一个度”,这种内容看多了,用户的第一反应就不再是我也想买,而是这又是广告,烦死了。

    2.铺量式的轰炸

    用户最讨厌在一个搜索场景下,我刷到10条笔记,有四五条都在讲同一款产品。有一个朋友直接和舒泽讲“这不是种草,这简直就是骚扰”。

    舒泽见过一个最夸张的国产洗发水品牌,标榜自己来自欧洲。一周内投放了300多篇KOC和素人笔记,特别是素人笔记内容高度同质化,甚至连配图风格都一样,最搞笑的是很多内容小红书是南方的IP地址,抖音出现一样的内容却是北方的IP地址,评论区也全是假的水军。真不知道,是什么样的品牌负责人如此聪明?是什么样的投放机构如此专业负责?

    3.很脏的痛点绑架

    比如,“不用这个你就会长皱纹”“爱自己就要送自己一个XX”,这种内容可能对一些低认知的用户短期有效(吧),但长期来看只会让越来越多的内容观众厌恶这个品牌,舒泽对这种品牌常常是生理性厌恶。

    以上这三点,是舒泽分析得出的会成功引起用户反感的品牌负资产内容。其实,借用上个月看到的一个中国互联网广告数据报告中的一句话:用户的成熟度在快速提升,他们对应用内容质量的要求也在迅速提高,对强转化为目的的硬广内容容忍度在指数级降低。(作为一个10年多的行业从业者,舒泽觉得用户不是不愿意被种草,而是不愿意被当傻子~)

    对(真的)达人来说,这是一场劣币驱逐良币的(伪)升级

    我认识一个做家居、护肤测评的小红书博主,粉丝大概2.7万,虽然不多,但内容质量很高。特别是护肤测评,每篇笔记都会做成分分析,甚至有的会拿朋友的脸做对比测试,写详细的测评笔记。

    她在10月的时候告诉我,她今年接到的商单数量下降了60%。我问她为什么?她说很多品牌觉得性价比不高,同样的预算找她做一篇深度测评还不如找20个小KOC或者50个素人发布一些理想化的卖点模版笔记,然后机构还能给这些笔记做数据,这样品牌方的人脸上也好看……

    这就是现实,铺量优先,质量其次。结果,认真做内容,能给品牌带来正资产的达人接不到单,水军账号和数据造假者却活得滋润。

    舒泽在之前《小红书推品:4.2万元预算,如何撬动387.43万的曝光,还能销售回本?》一文中有提到过一个概念叫“EVAF达人检测模型”,互动指数、内容价值、数据真实性、品牌匹配度。现在回头看,真正能通过这个模型筛选的达人,在市场上反而是性价比最低的那批。

    所以,目前整个种草环境已经陷入了恶性循环:内容越来越水——用户越来越不信——品牌越来越焦虑——投放越来越卷——内容更加工业化批量化同质化……

    02 饱和攻击失效的原因:本质和逻辑的把握出现方向性问题

    饱和攻击失效,其实是必然。但关于失效的原因,如果简单的归因为流量红利消失,或者是用户注意力分散就过于片面了。

    舒泽认为营销,特别是种草营销已经从单纯的告知和触达,变成了证明和运营。

    也就是说,过去信息稀缺,用户不知道有什么产品,品牌营销的任务是让用户知道。所以,铺量是有效的,你喊得越响,用户记得越牢。而现在,信息过载,用户的解决list上不缺选项,用户缺的是判断。品牌营销的任务不再只是单纯的让用户知道,而是让用户相信你是最优解。这是本质性的变化。

    所以,当你的产品只是用户list上的一个选项(注意!只是一个选项),你需要做的不是继续喊我很好,而是证明我为什么是你的最优解。无论是铺量、模版还是脏绑架解决的都只是覆盖问题,而不是说服问题,哪怕你可以让2000万个人都看到你,但如果这2000万人看完之后的反应是“哦~又一个……”,那这2000万个触达就都是无效的。

    当然,饱和攻击思维的失效,其实根本是因为品牌行业的从业者很多鱼龙混杂(我不理解什么人都能做品牌这件事,反正我在招聘品牌部的成员时,我选择极其苛刻)。这种鱼龙混杂的品牌从业者没有科学的认知体系和底层逻辑,导致了不知从哪看的一知半解的方法论就批量化应用,甚至形成这个帮派、那个组织。这些从业者:

    他们常常把触达=认知。

    传统的种草逻辑是,用户被触达的次数越多,对品牌的印象就越深刻,购买意愿就越强。但是,大哥大姐们,这是电视广播时代的思路,现在还用这个思路,真的蛮有(不)趣(专业)的。

    目前的状态,要搞清楚,当用户被同类信息反复推荐轰炸的时候,大脑就会自动屏蔽这些信息(舒泽甚至有空会挨个举报)。

    最糟糕的是,很多品牌从业者,还意识不到过度触达不仅无法建立认知,还会产生负面效果,给品牌带来负面资产。这就像文章开始舒泽说的有人吐槽这不是在种草,这是在实施骚扰。

    之前有一个母婴用户的CMO求助舒泽,他们在三个月对同一个画像用户触达了8次,且内容话术高度雷同,但结果是用户对品牌的主动搜索不升反降。

    他们常常把曝光=信任。

    种草的本质是什么?种草的本质是营销。营销的本质是什么?营销的本质是告知价值和证明价值,从而建立信任。

    但,当种草被变成一门批量化工业化模版化生产的生意时,这个信任就被稀释了。特别是,现在各个平台上内容的商业化程度越来越高,用户基本能达到一眼识别的程度。

    如果说信任的建立需要真诚和时间,那么信任的消解可能只是看了几篇你为了增加曝光量而铺的量、或者脏脏的标题党。

    他们常常把短期转化=长期价值。

    很多品牌营销的种草KPI是这样设定的:本月投放50万,要求带来100万的GMV,ROI不低于1:2。先不说这个KPI有没有问题,舒泽觉得这事儿很短期、很收割、很白牌。

    小红书之前提过一个概念,ROI(T+X)。T是投放日,X是消费决策周期。在写这篇文章的时候,舒泽特意查了很多品类的用户决策周期,护肤精华大概在20天+(客单价高的甚至在30天+),部分母婴甚至达到了60天+。

    这意味着什么?这意味着很多目前的投放逻辑都是错的,内容铺量而出,关注当月转化,而不关注长期耕耘。(其实写到这里,也是一个悖论:明明做的就是工业化的铺量内容,耕耘一个不长草的地,有意义吗?这件事的核心还是在选择怎么种草的那一个起始环节就错了。)

    舒泽之前,多次在不同的文章说过,种草的核心价值不是卖货,而是帮助品牌建立心智。因为用户就算看到了种草也不一定当场就买,但是这个种草不代表没有用。他们可能会在其他渠道继续被种草,然后在某个时刻产生想要的转化。这就是舒泽之前提出的场域协同种草的底层认知逻辑模型。

    如果你只盯着短期ROI,就会陷入不停投放——效果递减——加大投放的死循环。

    03 解决问题的底层逻辑:存量竞争时代种草的核心作用

    舒泽习惯于先讲问题,再讲底层逻辑,最后讲解法。

    这个解法,我们首先要基于一个共识,即:在存量竞争时代,品牌营销种草的最核心作用只有两个,一个是降低用户的选择成本,一个是降低用户的信任成本。

    有了共识,我们再来看一个关于用户怎么刷内容的底层逻辑:

    当用户在刷小红书或者抖音的时候,他们处于一种放松的、直觉主导的、低耗能的状态。

    *心理学上把人的思维系统分为两种,系统1和系统2。系统1是直觉思维,快速、自动、不费力。系统2是理性思维,缓慢、刻意、耗费精力。

    用户在刷短视频或者笔记的时候,调用的体系几乎全是系统1。他们不会认真分析你的成分,也不会仔细阅读你的参数,不会像做研究一样对比你和竞品的差异。

    他们会在很快的时间内做出一个判断,这个和我有关吗?low吗?有意思吗?值得继续看下去吗?如果出现了一丝否定的答案,那么手指一滑你就消失了。所以,很多内容其实都是带有先天失效基因的,只不过在当今媒介语境下更加严重。

    今天这篇文章不是讲内容的,所以此处就不再展开。舒泽受《故事经济学》和《影响力》等经典影响,创造了品牌内容资产沉淀之故事种草三标准三要素法则。

    以上,做种草的内容,第一步到底是我想要传递什么信息,还是思考用户会在什么状态下会看到这条内容,什么样的内容会在这个状态下打动他们,就能看出策略段位的高低了。

    04 七大解法:如何让种草形成品牌资产

    然后,舒泽总结了七个互相关联的方法论体系。

    一、从饱和攻击到精准狙击:核心圈定法+真实老用户撬动叠加触达法+内容节点流转法+EVAF筛选法

    2024年,舒泽服务过一个新锐洗护品牌,帮他们做了一次投放策略的重构咨询。他们之前的做法是每个月投放固定的150-180篇内容,覆盖16-20个品类关键词,然后合作至少100个达人。(因为有些达人是多篇建立信任,所以总数量大于总人数。)

    舒泽让他们按照我的方法,从push人群、投放内容、达人筛选三方面进行更精准的拆解和重组:

    1.不是所有的用户都值得你花钱触达

    舒泽给他们的策略是画两个圈,一个圈是最有可能为你发声的人群,第二个圈是你筛选三遍后觉得最精准的人群,然后花重精力投放这两个圈交叉部分的人群。

    这背后的逻辑是:用传统媒介投放+官方UGC活动的双重逻辑来重构整个内容投放,一方面确保在核心人群中打透,另一方面通过1+N的传播影响模型增加真实用户对真实用户的触达撬动和曝光撬动,从而产生非直接的深刻的价值心智影响。

    2.不要做全内容,而是要做节点内容

    舒泽根据洗护用户的决策习惯和决策路径,让品牌方准备三类内容:

    -认知阶段内容:聚焦在痛点的唤醒,不要提品牌和产品,只唤起痛点问题

    -考虑阶段内容:聚焦在产品的解决方案,和品牌的一些信任背书,只作为答案选择出现

    -决策阶段内容:聚焦在产品的使用体验,和品牌的个性化服务,全真实达人个性化真实反馈

    以上内容,和品牌型内容、电商活动内容按照节奏出街。

    3.不是粉丝多数据高就值得投,精准筛选匹配度

    让品牌方用EVAF模型重新筛选达人池达人,最后入选的达人真实互动画像(不是粉丝画像)和我们想要的人群重合度超过70%。

    结果,大概三个半月的时间,品牌的进店成本下降了46%,搜索词排名从50+升到12,GMV较上一个周期增长53%,而这次整个预算只有上一个周期的89%。

    当然,在这个模块还有一个很核心的点,就是这个品牌按照营销的证明功能,做了场景化证明、对比化证明、用户化证明。

    二、从种草到养草:关键创意假设库+内容IP系列矩阵+UGC激活

    90%的品牌方都把种草内容当作一次性消费,投完了就投完了,下个周期再投新的,这其实是巨大的浪费。

    舒泽之前和团队提出过一个概念叫内容故事资产沉淀,好的种草内容,要能持续产生价值,甚至能成为品牌用户故事的一部分。

    具体做法,舒泽之前在很多文章都写过,今天就再系统性的梳理一下:

    1.建立长尾内容库和关键创意假设库

    无论是小红书还是抖音,搜索流量都是很重要的增长点,特别是小红书已经成为生活搜索引擎。

    这意味着,一篇优质的笔记即使发布了半年、一年,只要关键词布局合理,依然可以被搜索推荐、被阅读互动,甚至转化。

    我建议品牌建立己方的长尾内容库,和竞品/行业/跨行业的关键创意假设库,把那些数据表现好、用户评价好、认知撬动高的内容整理出来,定期更新、持续优化,让他们成为品牌的智库和资产。

    2.打造内容IP矩阵

    单篇笔记的生命周期是有限的,但如果能把主题类型内容做成系列IP,那它的生命周期就可以被延长。

    这个既可以官方做,又可以三方做,时间长了,这个系列IP就会成为品牌的内容资产、故事资产。

    3.沉淀真实的用户反馈

    不要一味的闷头采买投放,也要考虑怎么激发已经购买的用户的UGC,这种UGC其实是最有价值的草。

    三、从达人采买到用户共创:设计分享峰值+提供共创条件+社群游戏+新品共创

    其实这个相当于把上一条第三点单独拿出来重点讲,就是让用户成为种草的主体,而不只是被种草的对象。

    传统的种草模式是单向的:品牌——达人——用户。这个模式是最标准的模式,不会错。但这个模式也有一个致命问题,达人是中介,而中介的风险和成本都很高。

    舒泽更建议,品牌在2026年的新模式可以尝试打造:品牌——用户——用户。

    怎么理解这个模式?

    1.找到可分享体验的峰值,并且场景化放大它

    就像舒泽之前做3C做潮玩做个护的时候,往往会找到产品体验中一个“哇”的时刻,这个可能就是用户最有分享冲动的时刻。把这个时刻设计好,设计得足够有视觉冲击力或情感冲击力,用它来对冲系统1和系统2的影响。

    *我们设置峰值体验,本质上就是为了强行打断用户系统1的划过惯性,瞬间激活系统2的关注,或者反过来利用系统1的直觉直接下达指令。

    2.降低UGC的创作门槛

    很多用户想分享使用体验,但苦于不知道怎么拍、怎么写。

    品牌方可以提供周期性、节点性的创作创意玩法模版库,这个可不是模版化的批量生产,也不是让用户抄,而是给一个参考框架,满足用户的表达欲,降低创作难度。

    3.建立用户社区或社群

    主题社区和私域社群不是用来促进销售、发放优惠券的,而是要用来经营用户关系。在社区社群里,通过符合品牌BI的人设发言来鼓励用户分享真实体验、提出改进意见、发散创意玩法、参与新品测试,同时伴随UGC利益点,这些用户就会成为品牌最忠诚的自来水。

    4.让用户参与产品共创

    最高级的种草,是让用户觉得这个产品是我参与设计的。

    舒泽见过一个有趣的案例,某个新锐的彩妆品牌在开第二曲线SKU赛道的新品研发阶段,邀请了100个主品牌的核心用户参与试用和反馈。最终这个新品上市时,这100个用户不仅达成了92%的购买率,还主动拉朋友购买,甚至主动在自己的社交媒体账户分享这个产品和当时自己的试用感受和科技体验感受,因为她们觉得自己是这个产品的联合创造者。

    以上,就能把用户从单纯的被动接受者变成忠实的主动传播者。舒泽认为,如果你能做到这种从媒介资源采买到赢得用户主动表达的策略转变,你的种草效率会有质的飞跃。

    四、从苛求单次转化到必须完成长期影响:预期调整+73法则

    很多时候,很多品牌方不见得是策略不对,而是心态不对。品牌是长期主义的事业,种草是持续投入的工程。

    舒泽的建议是直接把种草预算分成两个部分,70%用于建设,30%用于收割。

    建设是什么?是品牌认知、用户心智、品牌内容故事资产。

    收割是什么?是大促转化、效果投放、短期ROI。

    很多品牌因为这个心态预期的问题,就把比例搞反了,甚至90%的预算来用于收割。结果可不就是越收割,可收割的就越少,越急躁,用户越疏远你。

    舒泽想说,心智占领其实没有捷径的,就像我完全不相信很多营销套路,只有时间和持续的真诚投入才能完成品牌的坚实的长期影响。

    五、从平台内卷到垂类场景破圈

    2022年开始很多品牌都在小红书抖音上卷,结果CPM越来越高,CTR越来越低,特别是2024年下半年和2025年,小红书已经卷到不成样子。舒泽对此的建议是跳出来,找到新的触点。

    1.决策强效期,要更加注重线下场景,因为线下场景很多是强制触达,用户没办法划走、没办法跳过。而对于创意内容,用户的二创内容又会给品牌带来新的增长可能。

    2.决策对比期,更加注重人群垂类场景,不是所有的用户都在小红书、抖音上完成消费决策,一些主题的运动社区、母婴社区、二次元社区其实用户粘性更高、信任度更强,虽然体量小,但转化率往往更高。

    3.消费复购和衍生种草,更加注重私域场景,之前舒泽在多篇文章中都提到了私域对于种草的深刻影响,作用于内容增长、质量增强和费用降低。特别是很多私域借助其庞大的用户基础和社交链接,通过中长内容会带来更多的信息增量,能实现深度种草。根据舒泽的多轮实操,看下来,私域种草的成本更低、用户粘性更高、复购转化更好。

    以上,虽然只举了3个例子,但实际的实操中根据行业不同品类不同还有更多可能性。舒泽想说的是破圈的本质是在新的场景里建立新的触点,而不是在旧的战场上无限内卷。

    六、从卖家到组织者的重新角色定义:舒泽认为的种草与品牌价值表达交融的深度形态

    *普通的媒介主管、品牌经理、品牌总监/营销总监无法完成。

    这是一个十分深刻的转变。传统思维里,品牌是卖家,用户是买家。品牌的任务是把产品卖给用户,用户的任务是买或者不买。

    但目前态势下的营销种草,如果还以这个为定位是有问题的。因为用户不喜欢被推销,尤其是我之前提到的反复类推销内容的信息骚扰。当你以卖家姿态出现的时候,你的用户就天然的会有一层防御心理,你为了收割圈钱。

    更好的定位是什么,品牌可以成为社区组织者,这个相当于把五.3的内容升维。

    什么是社区组织者?就是一群有共同兴趣、共同追求的人的连接者和服务者。我举个例子,一个护肤品牌,传统定位下就是卖护肤品的,但是通过认知升维可以把自己的社区组织者定位为帮助敏感肌人群解决皮肤问题的服务平台,不光是护肤品,还有皮肤免疫增强食谱和运动。

    区别是:传统的卖家逻辑是我有产品,你来买;但组织者逻辑是,我们这是一群有一样问题的人,我来帮大家找到解决方案,顺便我自己也做了一些产品。这个逻辑下的转变带来的变化就是:用户不再把你当作要赚我钱的人,而是当作要帮我解决问题的人,信任感和后续运营空间就指数级增强了。

    对于这个点,也就是舒泽为什么会在任何品牌任职的时候争取整个品牌市场营销用户四大模块的主导权的原因,因为这个具体实操涉及整个战略制定和资源调度层面。一些有效的具体实操做法如下:

    1.营销活动的设计要从促销转变为赋能,不要只想着让用户买买买,要想怎么去赋能用户去表达、去社交、去实现品牌与用户的价值交互。一个好的营销(注意我不是说促销)活动,用户参与完之后的感受应该是品牌帮我完成了某种表达,而不是我被这个品牌用这个产品给割了。

    2.品牌内容的生产要从单向输出转为双向对话,不要只是自己说,要让用户也说。评论区的互动(这个是舒泽认为2026年种草工作最应该关注和提升的模块)、社群里的讨论、用户反馈的采纳等等,这些都是对话的形式。

    七、矩阵协同,来彻底重构种草的组织方式:舒泽一直奉行的综合种草政策

    上文也具体提过很多品牌做种草可能100个不够就500个,500个不够就1000个,但这种人海战术其实在种草工作上越来越不专业了。之前在《1.4万字实操解码高客单价产品在B站、知乎、小红书、抖音和垂类媒体的协同营销》一文中具体讲过这个问题,这里不再展开分析了,舒泽结合了23年写过的BGC+PUGC+UGC,直接上干货。

    第一层是1个品牌主阵地,也就是品牌官号。他的角色是品牌人设的树立者、权威信息的发布源、搜索流量的承接者。很多品牌官方号做得很官方,高高在上不接地气,这是有问题的。舒泽认为官方号应该是一个有温度的官方博主,有人设、有个性、会互动。

    一般情况,舒泽建议1主+2辅的矩阵,主号做品牌和产品的核心内容,一个辅号做用户福利和私域引流,一个辅号做一个高端/专业/硬核的背书,这三个号相互配合,形成立体的发声阵地。

    第二个层面就是N个核心KOL/KOC,这是经过苛刻筛选的优质发声伙伴,数量不需要太多,他们的角色就是在相关圈层攻坚,建立信任壁垒。这些人的合作,要深度合作,不要给死板brief,只给核心Message,让他们创造,允许他们成为他们自己。

    第三个层面就是X个真实的素人,特别是购后的素人。这个无论是之前的文章,还是本篇文章都已经讲了很多。他们的角色就是氛围组,主要负责场景化的长尾关键词覆盖搜索入口。具体的一些更详细实操,看我这篇文章《8300字拆解KOC、素人和营销号的协同投放》。

    舒泽认为,做完这些,其实就已经脱离了一个普通的种草工作,已经是一个品牌的全面输出维度。但,只有当你能做到这些,你才能站在品牌视角,你的种草内容才能形成品牌资产。

    05 一个变量,洞察2026年的新变量

    文章的标题也有说:做好2026年种草。

    所以写到这,舒泽又不得不提2026年种草的一个最大变量——当机器开始种草,也或者说当AI开始种草。

    请你设想一个场景:2026年的某一天,当你打开小红书,刷到一篇护肤测评,图片很精美、文案很流畅,就连使用感受都被描述得细腻真实,你觉得这个产品可能真的适合你,于是你准备下单。然后,你突然意识到一个问题,这篇笔记可能从第一个字到最后一个字,甚至图片都是AI生成的,写这篇分享的人,可能从未用过甚至摸过这款产品。

    这可不是科幻,这就是2025年正在发生的事儿,甚至很多机构大力诱导品牌方要这么做。2025年,AI生成的能力已经跨过了可用的门槛,一个能很好掌握工具的人,一天甚至就可以产出过去一个团队(4-5人)一周的内容量。从文案、图片,再到视频、音频,成本正趋向于0(指单内容)。

    当生产成本趋近于0,产量会发生什么?

    对,就是爆炸!

    舒泽对于2026年的判断是,内容供给将迎来一次结构性的过剩,这可不是说10%还是20%的增长,即使不到指数级,但也绝对能称之为数量级。

    这对品牌来说又意味着什么?

    意味着你之前所担心的内容同质化,在这种情况下会显得很古老和玩笑。同质化?那是因为产量还不够大,当AI辅助下产量足够大的时候,用户面对的将是一片无法分辨真假的内容沼泽。

    那,用户又会怎样反应呢?

    他们会启动更强的防御机制,每一条内容,第一反应不再是这说的对不对、有没有道理,而是这是真人说的,真听真看真感受吗?信任的门槛则会从内容是否真诚上升到内容是否是由真人生产,这是一个根本性的变化。

    舒泽觉得平台也不会坐以待毙,可以预见的是小红书啊抖音啊快手啊微信啊这些大的内容平台一定会升级审核机制。但,这背后还有两个问题:1.大量促使平台和AI内容会达到一个微妙的平衡(用户依旧怀疑加剧);2.很多所谓完美的内容失去看见的机会(用户根本看不到)。

    所以舒泽认为2026年种草的挑战,在怎么做出好的内容基础上,还有一个就是怎么证明你的内容是真的。这也就是舒泽在前面的段落花费很大的力气讲底层逻辑,为什么种草是证明而不再是单纯的告知、是赢得而不是简单的采买、是共创而不是单向输出背后的逻辑。

    怎么做出真的、人味的内容,舒泽之前很多篇文章讲的都很详细,这里就不再赘述了。

    ————————————

    这篇文章写到这,又差不多9000多字了。最后舒泽想说几句题外话:

    1.作为老板、作为决策者别执拗的认为你的种草同学没做好,我写的这7大点方法论,有4大点其实都是你作为策略制定者、作为决策者,自己对于这件事的专业度不行、认知能力不足和战略规划不到位。

    2.所有的品牌方,别把种草理解成一种获客手段,花钱——投放——触达——转化,这个理解是很肤浅的,种草的本质是关系经营。这不仅是一种认知的升维,也会让很多问题迎刃而解。

    本文由人人都是产品经理作者【舒泽品牌手记】,微信公众号:【舒泽品牌手记】,原创/授权 发布于人人都是产品经理,未经许可,禁止转载。

    题图来自Unsplash,基于 CC0 协议。

  • 放弃预测噪声,AI绘画才真的“轻”了?何恺明JiT架构的底层逻辑颠覆

    AI绘画领域正面临一场范式革命,何恺明团队的最新论文《Back to Basics》直指扩散模型的核心缺陷,提出了颠覆性的x-prediction解决方案。本文深度剖析了当前主流AI绘画模型因目标错配导致的技术债务,并揭示JiT架构如何通过回归本质目标,实现从复杂组件堆砌到极简端到端设计的范式转变,为行业带来成本结构和生态布局的全新思考。

    最近,ResNet作者何恺明团队一篇《Back to Basics》的论文在AI圈引发热议。作为曾以一篇论文被引用超20万次、定义现代深度学习架构的学术大牛,这次他把矛头对准了生成式AI领域公认的“标准答案”——扩散模型,提出了一个颠覆性观点:如今AI绘画模型的臃肿复杂,根源竟是从一开始就定错了核心目标。

    一、现状困局:为错配目标买单的技术债务

    现在行业主流的AI绘画模型,比如Stable Diffusion这类潜扩散模型(LDM),架构复杂到让开发者头疼。但这种复杂并非技术升级的必然,而是为了掩盖一个“反直觉”的目标设计——让模型预测噪声(ε-prediction)。

    这就像让员工去数满是雪花的电视屏幕上每个噪点的位置和数量,本身就是一项高难度、反常识的高维计算任务。为了让模型能完成这个不合理的目标,行业不得不叠加各种“中间件”,却埋下了重重隐患:

    1. VAE有损压缩:图像细节的“隐形损耗”

    为了处理高分辨率图像,LDM必须先通过VAE(变分自编码器)进行压缩。主流SD模型的压缩率高达f8,也就是长宽各缩小8倍,512×512的图像会被压缩到64×64的潜空间。这种压缩是不可逆的,就像把高清照片压成模糊缩略图再还原,文字模糊、人脸微表情丢失、图像中出现莫名的“黑洞”伪影,本质上都是VAE这个“中间商”造成的信息损耗。

    2. 额外编码开销:拖慢速度的“冗余环节”

    为了让模型理解图像,还需要把图像切碎、编码,这不仅增加了推理延迟,让生成一张图要等更久,还让文本和图像的多模态对齐变得异常困难。很多开发者都有过类似经历:为了调优VAE和U-Net的特征对齐,研发周期被迫拉长数周,而推理时的显存占用始终居高不下,成为落地时的一大障碍。

    这些层层叠加的技术组件,本质上都是为了弥补初始目标设计的缺陷,最终形成了沉重的技术债务,让AI绘画模型陷入“越优化越复杂”的循环。

    二、核心破局:换个目标,让系统“轻装上阵”

    何恺明团队的核心洞察,是把模型目标从“预测噪声”改成“直接预测原图”(x-prediction)。这背后藏着一个关键的数学逻辑——流形假设。

    简单来说,真实世界中的有效图像(比如一只猫、一朵花),在数学上其实分布在一个极低维度的“流形”上,就像在广阔沙漠中只有一条清晰的道路;而噪声则充满了整个高维空间,如同沙漠中漫天的黄沙。

    过去让模型预测噪声,相当于让AI在漫天黄沙中寻找规律,难度极大,只能靠VAE降维等手段辅助;而让模型直接预测原图,就相当于让AI始终朝着那条清晰的道路前进,目标函数的收敛性自然更好。

    MIT最新研究显示,一旦切换到x-prediction目标,之前复杂的VAE、Tokenizer等组件都成了多余。只需要一个最基础的Transformer(ViT),就能跑通AI绘画的全流程——这就是JiT(Just image Transformers)架构的核心逻辑。

    三、架构革命:极简主义的“少即是多”

    JiT的设计哲学堪称激进,它砍掉了所有非必要的“特殊设计”,回归到最纯粹的端到端优化:

    • 无需Tokenizer:不用把图像切成小块编码,直接处理原始图像数据;
    • 无需VAE:在像素空间直接生成图像,所见即所得,彻底避免压缩带来的信息损耗;
    • 可选CLIP:即便不依赖大规模预训练的文本编码器,也能生成有意义的图像。

    这种架构变革,让AI绘画模型的开发逻辑从“搭积木式”的组件拼凑,回归到“端到端”的统一优化,从根源上简化了技术栈,也为解决长期存在的技术债务提供了新思路。

    四、商业落地:机遇与挑战并存

    作为产品人,JiT架构的价值远不止于技术简化,更可能重构AI绘画的成本结构和行业生态,但落地过程也面临三重现实考验:

    1. 研发成本的“降维空间”

    目前训练一个Stable Diffusion 2级别的模型,仅硬件成本就约5万美元,再加上调试VAE、数据清洗、对齐微调的人力成本,总拥有成本(TCO)相当高昂。JiT证明了去掉VAE预训练环节的可行性,如果复用这种架构,下一代模型的冷启动训练时间有望大幅缩减,迭代速度将显著提升,这对企业来说是重要的成本洼地。

    2. 生态迁移的“转换成本”

    虽然JiT架构更简洁,但商业化落地面临巨大的生态壁垒。目前AI绘画的整个生态(比如ControlNet、LoRA、AnimateDiff等插件)都建立在Stable Diffusion的潜空间之上,若转向JiT,所有社区插件都需要重写。对商业公司而言,技术优势往往难以对抗生态优势,除非JiT能在生成质量上实现类似Sora对视频模型的“降维打击”,否则短期内很难撼动SD的主导地位。

    3. 算力需求的“平衡博弈”

    直接在像素空间运行Transformer,计算量会大幅增加。传统LDM通过潜空间压缩,能将计算需求降低约48倍,而JiT为了应对计算暴涨,采用了激进的像素打包策略(比如将16×16或32×32的像素打包处理),本质上是用“颗粒度”换取“计算效率”。这可能导致JiT在手机等低算力端侧设备的部署难度,比SD还要大,如何平衡计算效率与生成质量,是其商业化的关键。

    五、回归本质:产品复杂时,先检查目标是否正确

    目前来看,JiT的生成效果(FID Score)虽有竞争力,但尚未达到商业级的惊艳水准,还不是Midjourney V6的直接竞争对手。但它的战略意义远超技术本身——它教会我们“去习得”(Unlearning):过去三年在扩散模型上堆砌的复杂组件,可能只是为了弥补初始目标错误而打的补丁。

    这对产品人有着深刻的启示:当我们的产品逻辑越来越臃肿,需要靠无数个边缘案例的补丁来维持运转时,不妨停下来反思:是不是从一开始,我们的北极星指标(North Star Metric)就定错了?

    技术的进步往往不是源于组件的堆砌,而是源于对核心问题的重新审视。JiT架构的出现,让AI绘画回归到“直接生成图像”的本质目标,也为整个行业提供了一个重要思路:回归本源,或许才是突破瓶颈的最短路径。

    本文由 @命运石之门 原创发布于人人都是产品经理。未经作者许可,禁止转载

    题图来自Unsplash,基于CC0协议